Bioelectronic Devices for Personalized and Precision Medicine: from Wearable Sensors to Medical Nanorobots

Wei Gao

Assistant Professor of Medical Engineering Division of Engineering & Applied Science California Institute of Technology

Outline

Wearable Biosensors

- Technology Development
- Fitness and Health Monitoring

Synthetic Nanomachines

- Technology Development
- Biosensing and Drug Delivery
- Current Research Focus

Wearable Biosensors for Personalized Medicine

Commercial health monitors can mainly track physical activities and vital signs

Challenges and opportunities: physiological monitoring at molecular levels

Human Sweat

Electrolytes

• Na⁺, Cl⁻, K⁺, NH₄⁺, Ca²⁺, H⁺

Metabolites

 Lactate, glucose, urea, uric acid, creatinine

Small Molecules

• Amino acids, cortisol, DHEA

Proteins & Peptides

 Interleukins, tumor necrosis factor, neuropeptides

Xenobiotics

 Heavy metals such as Cu, Hg, Cd, Zn, Pb, As, Ni

Caltech

- Ethanol
- Drugs
- Cosmetics

The Current Healthcare Applications of Sweat Test

Current sweat test cannot provide real time information and requires extensive laboratory analysis

Wearable Sweat Biosensors

Real time, non-invasive, continuous health monitoring

Our Technology

Fully Integrated Wearable Sensors or Perspiration Analysis

- Real time in situ monitoring:
 - Metabolites (glucose, lactate)
 - Electrolytes (Na⁺,K⁺)
 - Skin temperature.
- On site signal conditioning, processing, wireless transmission.
- Real time sensor reading calibration.
- Data display on cell phone.
- Data aggregation on cloud server.

Gao et al. Nature, 2016, 529, 509.

Wearable Sweat Biosensors: System Level Integration

The platform consists of disposable sensor patch and reusable flexible printed circuit board.

Caltech

System Level Technology Development - I Flexible Sensors – Enzymatic Sensors (Glucose and Lactate Sensing)

Prussian Blue is used as mediator to lower the operation potential (from 0.6~0.7 V to ~0 V) and minimize the interferences.

System Level Technology Development - I

Flexible Sensors – Ion Selective Sensors (Na⁺ and K⁺ Sensing)

Caltech

System Level Technology Development - II

Flexible Printed Circuit Board

Fabrication process flow for the flexible sensors

Characterization of the sensors

All the sensors show linear response vs concentration or logarithm of concentration

System Level Interference & Temperature Compensation

Interference Study

Temperature dependence

The chemical sensors have good selectivity.

Real time temperature compensation is necessary.

Gao et al. Nature, 2016, 529, 509.

Repeatability, Stability and Calibration of the Sensors

Na⁺ and K⁺ sensors: 1% relative standard deviation in sensitivity Glucose and lactate sensors: 5% relative standard deviation in sensitivity

For Na and K sensors, **one-point calibration** is needed.

Real time on body sweat analysis

Gao et al. Nature, 2016, 529, 509.

Caltech

Real time multiplexed sweat analysis during indoor cycling

The device can be used to measure detailed sweat profiles and to collect big data.

Gao et al. Nature, 2016, 529, 509.

ltech

Example Application: Dehydration Monitoring

Sweat sodium can potentially serve as a biomarker for dehydration monitoring.

Gao et al. Nature, 2016, 529, 509.

Wearable Sensors for Ca²⁺ and pH Monitoring

Kidney function monitoring

Simultaneous monitoring of Ca and pH is essential for accurate Ca analysis.

Nyein, Gao et al. ACS Nano, 2016, 10, 7216.

Wearable Sensors for Heavy Metal Monitoring

Heavy metal levels in body fluids are extremely low.

Anodic stripping voltammetry for trace level heavy metal analysis

Gao et al. ACS Sensors, 2016, 1, 866.

Characterization of the Microsensor Arrays

The microsensor array (Au and Bi) can selectively detect 5 heavy metals.

Gao et al. ACS Sensors, 2016, 1, 866.

Heavy Metal Monitoring of Body Fluids

The wearable sensors can accurately measure heavy metals in body fluids.

Gao et al. ACS Sensors, 2016, 1, 866.

How to Access Sweat Sample Without Exercise?

Beyond physical exercise: iontophoresis based sweat extraction

Sweat can be induced on demand through iontophoresis.

A Wearable Platform for Sweat Extraction & Sensing

Beyond physical exercise: accessing sweat samples **on demand** using iontophoresis

PNAS, 2017, 114, 4625

Iontophoresis based Sweat Extraction

Sweat extraction can be controlled by type of drugs and the drug dosage. PNAS, 2017, 114, 4625

Periodical Sweat Extraction using the Wearable Platform

Caltech

Example Applications of Wearable Sweat Biosensors

Medical monitoring and diagnosis without accessing blood

Non-Invasive Glucose Monitoring

Wearable sweat sensors enable the correlation studies between sweat biomarkers and blood biomarkers

PNAS, 2017, 114, 4625

Example applications of wearable sweat biosensors

Medical monitoring and diagnosis without accessing blood

Cystic Fibrosis Diagnosis

Caltech

Example applications of wearable sweat biosensors

Medical monitoring and diagnosis without accessing blood

Cystic Fibrosis Diagnosis

Wearable sweat sensors can be used for Cystic Fibrosis screening and diagnosis.

PNAS, in press.

Wearable Sweat Analysis - Outlook

Gao et al. Nature 2016; Gao et al. IEDM 2016.

- A fully integrated sweat sensing platform for real time, continuous sweat analysis.
- This platform enables numerous physiological & clinical investigations including but not limited to:
 - Fitness monitoring
 - Doping/drug dosage control
 - Aging
 - Stress or depression, neurological disorders
 - Early disease diagnosis

Outline

Wearable Biosensors

- Technology Development
- Fitness and Health Monitoring

Synthetic Nanomachines

- Technology Development
- Biosensing and Drug Delivery
- Current Research Focus

Nanomotors & Nanomachines

Fantastic Voyage, 1966

A miniaturized submarine and its crew are injected into a coma victim in a perilous mission to destroy the blood clot that threatens the patient's life.

Molecular Machines 2016 Nobel Prize for Chemistry

Molecules

Micro/nanomaterials

Fulfill the 'Fantastic Voyage ' Vision – Nanoscale Propulsion

Life at Low Reynolds Number

- The challenge of propulsion at nanoscale: low Reynolds Number fluid.
 - **Navier-Stokes equations**

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u} \quad Re = \frac{\mathrm{UL}}{\nu} = \frac{\mathrm{Interial} \ \mathrm{Force}}{\mathrm{Viscous} \ \mathrm{Force}}$$

- To understand how micro-organisms move in water, we would have to imagine ourselves swimming in a pool of **honey**.
- Swimming strategies used in the macro-scale world may not be applicable in the nanoscale.

Caltech

Synthetic Micro/Nanorobots

Magnetic Propulsion

Gao et al. JACS 2010, 132, 14403. Gao et al. Nano Letters 2014, 14, 305. Gao et al. Small, 2011, 7, 2047. Park and Gao, Soft Matter, 2011.

Biosensing

Wang and Gao, ACS Nano, 2012, 6, 5745. Gao et al. ACS Nano, 2014, 3170. Nano Letters, 2012, 12, 396. JACS, 2012, 134, 15217.

Ultrasound & Light

JACS 2015, 137, 2163. ACS Nano 2013, 7, 9232. ACS Nano 2016, 10, 839. Small 2016, 12, 577.

Drug Delivery

Gao et al. ACS Nano 2015, 9, 117. Gao et al. Small 2012, 8, 460. Gao et al. Nanoscale, 2014, 6, 10486. Small, 2014, 10, 2830.

Chemical Propulsion

Gao et al. JACS 2014, 136, 2276. Gao et al. JACS 2013, 135, 998. Gao et al. JACS 2012, 134, 897. Gao et al. JACS 2011, 133, 11862. Gao et al. ACS Nano 2012, 6, 8432.

Nanofabrication

Nanoimaging

Wu and Gao, Adv. Funct. Mater. 2015. Li and Gao, Nature Comm. 2014. Olson and Gao et al. Biomaterials, 2013.

Highly Efficient Polymer-based Microengines

Template Electrosynthesis of Polyaniline/Platinum Microtubes

W. Gao et al. JACS 2011, 133, 11862.

The Propulsion of PANI/Pt Microengines

The microrockets display efficient propulsion in PBS buffer, human serum, cell culture media, plasma, saliva and seawater.

W. Gao et al. JACS 2011, 133, 11862.

The Materials Platform: Conducting Polymer Components

Higher surfactant and low monomer concentration provides optimal design for the propulsion (b).

W. Gao et al. Nanoscale, 2012, 4, 2447.

The World's Fastest Micro/Nanomotors

The Motion of the Polymer based Microrockets in Physiological Temperature

The fastest objects	Max Relative Speed (body length s ⁻¹)
Human (Bolt)	6
Cheetah	20
Ferrari Enzo	21
Space Shuttle	~200
Bacteria	~100
Polymer based Microengines	~1400

W. Gao et al. Nanoscale, 2012, 4, 2447.

W. Gao et al. Chem. Rec. 2012, 12, 224.

Magnetic Motion Control

PANI/Ni/Pt Trilayer Tubular Microrockets

The propulsion of the microengines can be controlled by external magnetic field.

W. Gao et al. JACS 2011, 133, 11862.

Polymer-based Microengines in Microchannels

The microengines have ability to travel within a predetermined path along the microchip channels

Nanoscale, 2013, 5, 1325.

The Biosensing and Bioisolation using Micro/Nanomotors

The microrockets functionalized with ss-DNA, aptamer, antibody, and lectin receptors, for 'on-the-fly' isolation of nucleic acids, proteins, cancer cells and bacteria, respectively.

J. Wang and W. Gao, ACS Nano, 6, 2012, 5745; J. Li et al. ACS Nano, 2016

Selection and Isolation of Cancer Cells in Biological Fluids

Circulating tumor cells (CTCs) Current strategies: complex procedures and bulky equipment.

Capture and transport of a CEA+ pancreatic cancer cell by an anti-CEA mAb modified rocket.

Angew. Chem. Int. Ed. 2011, 50, 4161.

Lectin Modified Microengines for Bacteria Isolation

Campuzano, Gao et al. Nano Lett., 12, 2012, 396.

Microrockets with 'Built-In' Boronic Acid Recognition for Isolating Sugars and Cells

poly(3-aminophenylboronic acid) - PAPBA

Selective monosaccharide recognition of of the boronic acid-based outer polymeric layer Kuralay, Gao et al. JACS, 2012, 134, 15217.

Towards In-Situ Fuel

Hydrogen-Bubble-Propelled Zinc-Based Microrockets

Zn is a biocompatible and biodegradable material in metallic implants in humans.

W. Gao et al. JACS, 134, 2012, 897-900.

The First In Vivo Study Using Synthetic Nanorobots

Drug Delivery in Gastrointestinal Tract

The nanorobots lead to dramatically improved retention of payloads in the stomach lining. W. Gao et al. ACS Nano, 2015, 9, 117.

In Vivo Toxicity of Synthetic Zn Micromotors

Fully biocompatible: No apparent increase in gastric epithelial apoptosis.

W. Gao et al. ACS Nano, 2015, 9, 117.

Water Driven Biodegradable Micromotors

Mg is a biocompatible and biodegradable material in metallic implants in humans.

The new micromotors utilize the **galvanic corrosion**, **chloride pitting corrosion** processes to facilitate the Mg-water reaction.

W. Gao et al. Nanoscale, 2013, 5, 4696.

Enteric Mg Micromotors in the GI Tract

Enteric Mg Motors Can Selectively Position and Spontaneously Propel in GI tract

J. Li et al. ACS Nano 2016, 10, 9536-9542

Micromotor-Enabled Active Drug Delivery for Treatment of Stomach Infection

Mg Motors Can Deliver CLR Effectively and eliminate the adverse effect caused by PPI Nature Comm. 2017 8: 272.

Synthetic Nanomotors - Outlook

Outline

Wearable Biosensors

- Technology Development
- Fitness and Health Monitoring

Synthetic Nanomachines

- Technology Development
- Biosensing and Drug Delivery
- Current Research Focus

Bioelectronic Devices for Personalized and Precision Medicine

Acknowledgement

Prof. Ali Javey

Prof. Joseph Wang

Collaborators and Contributors

Technology development: L. Zhang, E. Lauga, J. Orozco, S. Campuzano, F. Kuralay

H. Nyein, S. Emaminejad, E. Wu, Z. Shahpar, S. Challa

Physiological collaborators: G. A. Brooks, A. Peck

Clinical collaborators: D. Klonoff, R. Mattrey, R. W. Davis, J. Stern, C. Milla

Thank you for your attention! Questions?

