Nanodevices and Maxwell's Demon

Electronic demon

For a detailed write-up of this lecture See arXiv:condmat/0704.1623

Unified viewpoint: Materials

online simulations and more

Unified viewpoint: Ballistic to Diffusive

online simulations and more

O.1 mm Macroscopic dimensions

10 μm <--- L --> 1 μ m

0.1 μm 10 nm

1 nm

0.1 nm

Atomic dimensions

Quantum transport far from equilibrium

Top-down view

0.1 mm

Macroscopic dimensions

$$G = \sigma A/L$$

$$\sigma = e^2 n \tau / m$$

 $0.1 \mu m$

"Very au=? complicated"

10 nm

1 nm

0.1 nm

Atomic dimensions

Bottom-up view

0.1 mm

Macroscopic dimensions

$$G = \sigma A/L$$

$$\gamma \sim \frac{2\hbar D}{L^2} \rightarrow D\gamma \sim A/L$$

$$G=(e^2/h)(\pi D\gamma), \quad D \sim AL$$

$$\gamma \sim \frac{\hbar v}{L} \rightarrow D\gamma \sim A$$

0.1 nm

Atomic dimensions

$$G = \underbrace{(e^2/h)}_{1/25.8 \ K\Omega}$$

Equilibrium Energy Level Diagram

What makes electrons flow?

Current through a 1-level conductor

online simulations and more

Conductance?

Conductance quantum

$$\frac{dI}{dV} \sim \frac{e\gamma_1/2\hbar}{(2\gamma_1 + 4kT)^{\frac{1}{2}}}$$

$$\sim e^2/4\hbar$$
 if $\gamma_1 >> kT$

Normalized Conductance

Conduc tan ce quantum

$$\sim e^2/2 \pi \hbar \sim 1/25.8 K\Omega$$

Conductance quantum

Measurement of the conductance of a hydrogen molecule

R. H. M. Smit*, Y. Noat*†, C. Untiedt*, N. D. Lang‡, M. C. van Hemert§ & J. M. van Ruitenbeek*

* Kamerlingh Onnes Laboratorium, Universiteit Leiden, PO Box 9504,

NATURE | VOL 419 | 31 OCTOBER 2002 | ww

Importance of electrostatics

Importance of electrostatics

JMBER 13

PHYSICAL REVIEW LETTERS

29 SEPTEMBER 1997

Current-Voltage Characteristics of Self-Assembled Monolayers by Scanning Tunneling Microscopy

Supriyo Datta and Weidong Tian

ool of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907-1285

Seunghun Hong and R. Reifen Department of Physics, Purdue University, West Lafa

Jason I. Henderson and Clifford F

Department of Chemistry, Purdue University, West Laj

(Received 9 June 1997)

Electrostatics of a Nanotransistor

online simulations and more

Conductance: for any DOS, D

$$I \sim \frac{e \gamma_1}{2 \hbar} \quad \underbrace{D eV}_{\substack{\text{Number} \\ \text{Current} \\ \text{per state}}}$$

D: Density of states

$$I_{V} = \frac{e^{2}}{2\pi\hbar} \underbrace{\pi D\gamma_{1}}_{Transmission}$$
Conductance
Quantum

online simulations and more

Current versus temperature

$$I = \int dE D(E) \frac{e\gamma_1}{2\hbar} \left[f_1(E) - f_2(E) \right]$$

Molecular Thermoelectricity

online simulations and more

Thermoelectricity in **Molecular Junctions**

Pramod Reddy, 1* Sung-Yeon Jang, 2,3*† Rachel A. Segalman, 1,2,3 ‡ Arun Majumdar 1,3,4 ‡

By trapping molecules between two gold electrodes with a temperature difference across them, the junction Seebeck coefficients of 1,4-benzenedithiol (BDT), 4,4'-dibenzenedithiol, and 4,4"tribenzenedithiol in contact with gold were measured at room temperature to be $+8.7 \pm 2.1$ microvolts per kelvin (μ V/K), +12.9 ± 2.2 μ V/K, and +14.2 ± 3.2 μ V/K, respectively (where the error is the full width half maximum of the statistical distributions). The positive sign unambiguously indicates p-type (hole) conduction in these heterojunctions, whereas the Au Fermi level position for Au-BDT-Au junctions was identified to be 1.2 eV above the highest occupied molecular orbital level of BDT. The ability to study thermoelectricity in molecular junctions provides the opportunity to address these fundamental unanswered questions about their electronic structure and to begin exploring molecular thermoelectric energy conversion.

Experiment:

Reddy, et al., Science, 315 16 March, 2007.

Theory:

Paulsson and Datta, PRB 67, 241403 (2003),

From ballistic to diffusive transport

Separate dynamics + dissipation

> Landauer model

Dissipation Dissipation Dynamics

Newton's law Schrodinger equation

Mixed dynamics + dissipation

Boltzmann NEGF

Maxwell's demon as an energy conversion device

Need two groups of states:

"Red"

"Blue"

Anti-parallel (AP) Spin Valve

Perfect AP with Spin-flip Impurities

Perfect AP with Spin-polarized gate

Current at zero voltage!!

Device as a "demon"

Answer: From the contacts

Second law?

S = 0

Energy upto $T\Delta S$ may be extracted

Resetting the demon takes energy

Nanomagnets: Bistable demons

Nanoscale heat engine

Carnot's

Carnot's
$$\frac{Q_1}{kT} < \frac{Q_2}{kT_D}$$

Q₁: heat from contacts Q2: heat to "magnet" $Q_1 - Q_2$: useful work

Nanoscale Refrigerator

Back to the unified viewpoint

Quantum Transport far from Equilibrium

Materials

Transport Regimes

0.1 mm Macroscopic dimensions

10 μm <--- L -->

1 μ m

 $0.1 \mu m$

10 nm

1 nm

0.1 nm

Atomic

dimensions

Reference:

For a detailed write-up see arXiv:condmat/0704.1623

 A^2

Correlated/Entangled "demon"

Entangled!

