

Integrated Photonic and Plasmonic Nanomechanical Transducers

Vladimir A. Aksyuk

Purdue University, January 2018

NGT National Institute of Standards and Technology • U.S. Department of Commerce

NIST Center for Nanoscale Science and Technology (CNST)

- NIST's nanotechnology user facility.
- Enables innovation: Rapid access for all to tools for making and measuring nanostructures, with a particular emphasis on industry.
- Access in two ways:
 - NanoFab: Commercial state-of-the-art tool set at economical hourly rates, along with help from our dedicated, full-time technical support staff.

- NanoLab: Next generation of tools and processes through collaboration with research staff, who develop new measurement and fabrication methods in response to national nanotechnology needs.
 - The CNST also links the external community to nanotechnology-related measurement expertise at NIST (nano@nist.gov)

NIST & Center for Nanoscale Science & Technology

Optical MEMS and NEMS: Why?

- Control light: many elements, near-zero power dissipation
 - Image projection with mirror arrays
 - Adaptive optics
 - Datacom switching
- Optical measurement of MEMS / NEMS motion
 - Fast: MHz GHz frequencies
 - Sensitive: nanometer to picometer amplitudes
 - Noncontact method
- MEMS / NEMS sensors with optical readout
 - Enhanced transduction at small scales (AFM, magnetization, etc)
 - Portability and robustness

MEMS / NEMS + integrated photonics: Examples

- Atomic Force Microscopy probe with a photonic cavity readout
 - High performance nanoscale measurement tool
 - PTIR application
- High-Q NEMS for frequency-modulated sensing
 - Toward high bias stability and dynamic range
- Nanoscale gap plasmon NEMS phase modulator
 - Scaling of plasmonic-mechanical light control
- 100 nm scale gap-plasmon resonators coupled to NEMS
 - Precision, local motion sensing; optical modulation
 - Dynamics: regenerative oscillations and locking

Micro- and nano-mechanical transducers for nanoscale measurements

Atomic Force Microscopy **Measurement Principle:** Nanoscale physical system is coupled to a micro- or nano-mechanical device Detector and Feedback J. Chae et al. Nano Electronics Motion of the mechanical device is measured Letters 17 (2017) Photodiode Laser Low-dimensional or small systems – small transducers Geometrical confinement enhances interactions Cantilever & Tip Sample Surface Precision motion readout – local optomechanical PZT Scanner

http://en.wikipedia.org/wiki/Atomic force microscopy

Magnetic Vortices

C. A. Bolle et al, Nature 399, 43-46 (1999)

interaction

Casimir Force

H. B. Chan et al, Science 291 no. 5510 (2001)

Spin Torque

G. Zolfagharkhani et al, Nature Nanotechnology 3,(2008)

Nanoscale Magnetism

M. Wu et al, Nature Nanotechnology 12,(2017)

Optics is great for nanoscale motion measurement

- Power not dissipated in the transducer
- Small interaction region
 - Focal spot ~ λ (from far field)
 - Small devices can be measured
- Fast response
 - Excess bandwidth can be traded for sensitivity
- Precision at fundamental limits
 - Shot noise and backaction limited
 - No thermal noise in motion measurement
 - Standard Quantum Limit (SQL) can be reached

Sensing at fundamental thermo-mechanical limit

Thermal motion can be used and controlled

T.J.Kippenberg and K.J. Vahala, Cavity Optomechanics: Back action at the Mesoscale, Science, v. 321, p1172, 2008

V. B. Braginsky, F. Y. Khalili, *Quantum Measurement* (Cambridge Univ. Press, Cambridge, 1992).

Basic optomechanical coupling

Transmitted phase or amplitude is a function of mechanical coordinate

Different approaches are possible for on-chip transducers

Optical resonance enhancement

- A resonance increases the $d\phi/dx$ by the quality (Q) factor
- Optomechanical coupling is increased
- Delay is introduced
- Enables gain bandwidth tradeoff
- E.g. cavity lifetime = mechanical timescale

On-chip nanophotonic cavities for light confinement

Caltech -O. Painter, A. Scherer, J. Vuckovic, Kyoto University - S. Noda et al; NTT Laboratories – M. Notomi et al Specific design - K. Srinivasan and O. Painter, *Optics Express*, 2002

- •Confine field to volume $V \approx (\lambda/n)^3$
- •Large per photon electric field strength
 - •Enhanced interaction strength with matter
 - High cavity quality factor (Q) enhanced interaction time with matter

Sub-wavelength confinement: plasmonics

Plasmonics for near-field nano-imaging and superlensing

Satoshi Kawata^{1,2}, Yasushi Inouye³ and Prabhat Verma^{1,3}

Bowtie nanostructure with gap

Bumki Min^{1,2}†, Eric Ostby¹, Volker Sorger², Erick Ulin-Avila², Lan Yang¹†, Xiang Zhang^{2,3} & Kerry Vahala¹

Microscale optical transduction schemes: dielectrics

Limits in light concentration ability obscure nanometer-localized measurements

Doppler vibrometry – far field

Dielectric cavity optomechanical systems – resonance enhanced

Quantum limited sensitivity \approx am·Hz^{-1/2}

Whispering gallery resonators

(a) → F_{RP} ω/2π=57.8 MHz 50 μm

PRL 97, 243905 (2006)

Optomechanical crystals

Nature 459, 550 (2009).

Sensitive transduction of NEMS motion

coupieu priototorne er ystar nariosearns

DApplater Bacerbase Protitivity 5.19020914 (2009) $^{0.5}$

pr micro/nano instruments

M. Eichenfield et al, Nature, 459, 550-555 (2009)

Cavity-optomechanical motion sensing

Integrated cavity optomechanical sensing

- FAST: measure motion at up to 100 MHz to 1 GHz mechanical frequency
 - Optical Q: 10⁴ to 10⁶
- SENSITIVE: sense \approx 1 pm motion in 1 μ s (1 MHz)
 - $g_{om} = 1$ GHz/nm to 30 GHz/nm; noise level (0.5 to 5) fm / \sqrt{Hz}
- Self-aligned and stable
- Compact, fiber connectorized, practical
- Electrostatic and thermo-electric actuation and tuning

Nanoscale cantilevers for AFM

Atomic Force Microscopy

Nanoscale Cantilever?

S

 $k=m\omega^2$. High resonance frequency with a moderate stiffness

Larger bandwidth and faster scanning speed Smaller cross section => smaller viscous drag Fluctuation dissipation => smaller force noise

Nanoscale cantilever with integrated photonic cavity sensor

ATON It is we a st san Dar

=>

- Increase mechanical frequency while maintaining desired stiffness
- Improved force sensitivity and measurement bandwidth
 - Image acquisition rate
 - Fast force spectroscopy
 - Time-dependent forces

Operational AFM probe

Integration with AFM

Integration with AFM

Integration with AFM

Fast, low noise contact-mode nanomechanical AFM

Fast, low noise contact-mode nanomechanical AFM

New science with nano-AFM probe: advanced PTIR

- Photo Thermal Induced Resonance = IR spectroscopy with nanoscale resolution Chemical mapping
- Optomechanical probe = 50x increased sensitivity for thin samples

J. Chae, S. An, G. Ramer, V. Stavila, G. Holland, Y. Yoon, A. Alec Talin, M. Allendorf, V. A. Aksyuk, A. Centrone, Nano Letters **17** (9), pp 5587–5594 (2017).

Measuring thermal conductivity at the nanoscale

Speed + precision = dynamic thermal expansion relaxation

J. Chae, S. An, G. Ramer, V. Stavila, G. Holland, Y. Yoon, A. Alec Talin, M. Allendorf, V. A. Aksyuk, A. Centrone, Nano Letters **17** (9), pp 5587–5594 (2017).

Transducing via a mechanical frequency change

- Force, torque or motion => mechanical frequency change
- Advantages:
 - Insensitive to readout DC bias drift, 1/f noise
 - Very long averaging times for high sensitivity
 - Stable frequency/time references (e.g. vs. stable V or optical power)
 - Increased dynamic range
 - Mechanical element performance limits the transducer performance
- Applications:
 - Frequency-modulation atomic force microscopy (FM-AFM)
 - Physics: Magnetometers, Casimir force, etc...
 - Some macro- and micro-scale accelerometers

C. A. Bolle, Nature 399, 43-46 (1999)

High mechanical *f_MQ_M* tuning fork

Nanobeam tuning forks

Tension enhancement structure: Beam stress of ≈ 3.0 GPa

for same residual (film) stress.

Measured Mechanical Spectra

Compensation structures control tension in fork

- Mechanical frequency is defined by tension
- Tension depends on
 - Residual stress
 - Differential thermal expansion
- Pre-tension structure increases tension for given residual stress (e.g. x4.4, black line)

predetermined value (reduced slope)

Temperature compensation: experimental

Frequency stability: preliminary data

- Undriven device (thermal noise only)
- \approx thermodynamic limit up to 1s
 - Q ~ 30K, T₁ ~ 0.1 ms
- \approx 1 ppm (\approx 0.3 pm) bias stability

NATURE NANOTECHNOLOGY DOI: 10.1038/NNANO.2016.19

Figure 1 | The frequency stability of resonators measured in the literature is on average 2.1 orders of magnitude greater than the thermomechanical noise-limited stability. For each device, both the experimentally measured

Sub-wavelength confinement: plasmonics

owtie nanostructure with gap

MIM waveguides: <10nm gaps

Plasmonics for near-field nano-imaging and superlensing

Satoshi Kawata^{1,2}, Yasushi Inouye³ and Prabhat Verma^{1,3}

- Electron charge density oscillations
 - Strong interaction with light
- Nanometer energy confinement:
 - Electromagnetic energy →
 Electromechanical energy
- Favorable interaction/loss scaling

B. Dennis et al, Nature Photonics, 9, 267-273 (2015)

Deep sub-wavelength optical signal manipulation

Plasmonic nano-electro-mechanical transducer

NEMS Metal-Insulator-Metal plasmonic electrostatic transducer:

"Compact Nano-Mechanical Plasmonic Phase Modulators", B. Dennis et al, Nature Photonics, 9, 267-273 (2015)

Measured motion of Au nanobeams at 1 MHz

1 μm and 3 μm pitch suspended beams \approx 4 V, 1 MHz actuation

 \approx 100 nm amplitude

Measuring phase modulation

Position along out-coupler slit (µm)

"Compact Nano-Mechanical Plasmonic Phase Modulators", B. Dennis et al, Nature Photonics, 9, 267-273 (2015)

Phase modulation results

- > π rad phase modulation
- Excess loss below 70 %
- Optical switching Optical motion sensing

- Guided optical mode exists for gaps down to 1 nm
- Any wavelength longer than material absorption / surface plasma frequency

• Modulation vs. Loss?

"Compact Nano-Mechanical Plasmonic Phase Modulators", B. Dennis et al, Nature Photonics, 9, 267-273 (2015)

Theoretical: reducing device size

- Maintain constant low loss
- Length ~ Gap^{0.8}
- Achieve π phase range?
 Yes.
- Same relative actuation

Gap: 100 nm -> 20 nm Footprint: 2 μm x 100 nm

"Compact Nano-Mechanical Plasmonic Phase Modulators", B. Dennis et al, Nature Photonics, 9, 267-273 (2015)

Gap plasmonic modulation

- Nano-mechanically tunable gap plasmons
 - Large coupling large tuning with small motion
 - Scalable to very small size efficiency is maintained

- Nano-electro-mechanical plasmon phase modulators
 - > π range, low losses
 - \blacksquare Compact: 20 μm scalable down to 2 μm
- Path to optical devices with deep subwavelength footprint
 - Plasmonic switch model: 2.5 μm x 0.5 μm

From 2D to 3D confinement

- Confine to smallest volume => max mechanical modulation
- NOT field enhancement at a single point but max average field
 - NOT the usual mode volume metric

MIM waveguides

Gap plasmons

Localized plasmon resonances

Antennas

Localized gap-plasmon resonators

- Beneficial combination of MIM and antennas
- LGP mode is a standing-wave gap plasmon
- Reduced radiation loss vs. antennas \rightarrow higher optical Q

Localized gap-plasmon resonators

- LGP mode is a standing-wave gap plasmon
 - 100 nm to 300 nm typical lateral size
- Mode order, shape controls radiation coupling \rightarrow
 - higher optical Q
 - Nanoscale resonator near-optimally coupled to free space
- ~ 10 nm gaps extremely sensitive to vertical mechanical motion

Plasmonic-NEMS resonators

- Plasmonic prisms embedded into nanomechanical structures
- Dynamic localized gap plasmons (LGPs)
 - Produce strong, nanometer-localized optomechanical coupling

NIST & Center for Nanoscale Science & Technology B. J. Roxworthy & V. A. Aksyuk, Nature Comm. 7, 13746 (2016).

The full plasmonic-NEMS (pNEMS) architecture

- Added metal layer optimized for electrostatic and thermo-mechanical
- Couple nanoscale optical resonance to mechanical, thermal, electrical DOFs

NIST & Center for Nanoscale Science & Technology

B. J. Roxworthy & V. A. Aksyuk, Optica 5(1), 71-79 (2018)

Localized gap plasmon resonator + nanocantilever

- Silicon nitride cantilever: (5×1.25×0.175) μm³
- Embedded gold prism: (350×165×35) nm³ and (90×75×40) nm³

- B. J. Roxworthy & V. A. Aksyuk, Nature Comm. 7, 13746 (2016).
- B. J. Roxworthy & V. A. Aksyuk, Optica 5(1), 71-79 (2018)

pNEMS: scalable platform for plasmomechanics

B. J. Roxworthy & V. A. Aksyuk, Nature Comm. 7, 13746 (2016).

B. J. Roxworthy & V. A. Aksyuk, Optica 5(1), 71-79 (2018)

Process flow for plasmonic-NEMS platform

Lithographic layers:

- Plasmonic resonator
- Mechanical device
- Actuator

Modes / degrees of freedom:

- Optical
- Mechanical
- Thermal
- Electrical

- Key processing features
 - Chromium sacrificial layer \leq 15 nm build plasmonic resonator vertically
 - PECVD silicon nitride (SiNx) low temperature of 180 °C

NIST & Center for Nanoscale Science & Technology

B. J. Roxworthy & V. A. Aksyuk, Optica 5(1), 71-79 (2018)

Localized gap-plasmon resonators

- LGP mode is a standing-wave gap plasmon
- LGP resonance depends sensitively on gap size

Shrinking gap = plasmon red shift + reduced coupling

Measured g_{om} up to \approx 2 THz/nm; ($g_0 \approx$ 70 MHz)

Electrostatic actuation provides facile LGP tuning

NIST @ Center for Nanoscale Science & Technology B. J. Roxworthy & V. A. Ak

B. J. Roxworthy & V. A. Aksyuk, Optica 5(1), 71-79 (2018)

Electrostatic actuation provides facile LGP tuning

NIST @ Center for Nanoscale Science & Technology B. J. R

B. J. Roxworthy & V. A. Aksyuk, Optica 5(1), 71-79 (2018)

Electromechanical LGP resonance tuning

• $\Delta \lambda_{LGP} > FWHM_{LGP}$ and 40 % (4 dB) amplitude modulation

NIST & Center for Nanoscale Science & Technology B. J. Roxworthy & V. A. Aksyuk, Optica 5(1), 71-79 (2018)

Dynamic motion measurement using amplitude modulation

Modulated reflectivity >> photodiode >> spectrum analyzer

LGPs selectively transduce mechanical modes

Ambient, electrostatic drive

Vacuum, thermodynamic fluctuations

B. J. Roxworthy & V. A. Aksyuk, Optica 5(1), 71-79 (2018)

B. J. Roxworthy & V. A. Aksyuk, Nat. Commun 7, 13746 (2016).

Localized interactions enable sub-λ mode mapping

Bimorph enables Plasmomechanical Oscillators (PMOs)

 Optomechanical interactions via absorption, thermal actuation: delayed feedback

Single-element Plasmomechanical Oscillators

NIST & Center for Nanoscale Science & Technology

B. J. Roxworthy & V. A. Aksyuk, Optica 5(1), 71-79 (2018)

Oscillation injection-locked onto a weak stimulus

NIST B-Center for Nanoscale Science & Technology

B. J. Roxworthy & V. A. Aksyuk, Optica 5(1), 71-79 (2018)

Nanoscale plasmonic NEMS

- New type of plasmomechanical platform
 - Arbitrary planar shape, small gap, vertical motion
- High-sensitivity, localized optical motion measurements
 - 40x > state of art
 - ~ 100 nm interrogation area
- Optomechanical coupling ≈ 2 THz·nm⁻¹
 - New regime of light-motion interaction enabled
- Electrostatic actuation for excitation and strong tuning
 - Toward dynamically tunable metasurfaces
- Nanomechanical oscillators driven by individual plasmonic particles
- Engineered modes and couplings:
 - Plasmonic, mechanical, thermal, electrical
- Injection locking of nanomechanical oscillator
 - Frequency readout of week periodic stimul

Acknowledgements

Optical MEMS and NEMS Lab

Plasmonics

Brian Roxworthy

Brian Dennis NIST/Rutgers

Sang Min An

Photonics

n Thomas Michels

Houxun Miao

Jie Zou

PTIR Lab (CNST)

PI: Andrea Centrone Jungseok Chae Georg Ramer

Nanophotonics Lab (CNST) PI: Kartik Srinivasan Marcelo Davanco

<u>MOF Experts</u> (Sandia) Alec Talin, V. Stavila, M. Allendorf

Nitride Tuning Forks (Worchester PI) PI: Yuxiang Liu Riu Zhang

NIST Center for Nanoscale Science and Technology (CNST)

- NIST's nanotechnology user facility.
- Enables innovation: Rapid access for all to tools for making and measuring nanostructures, with a particular emphasis on industry.
- Access in two ways:
 - NanoFab: Commercial state-of-the-art tool set at economical hourly rates, along with help from our dedicated, full-time technical support staff.

 NanoLab: Next generation of tools and processes through collaboration with research staff, who develop new measurement and fabrication methods in response to national nanotechnology needs.

Seeking collaboration opportunities Postdoc positions are available