```
GHz CMOS-MEMS resonators
```

Dana Weinstein

Birck Faculty Seminar March 8, 2018

D. Weinstein | Birck 2018.03.08

Motivation: Frequency Sources

Military & Aerospace

Communications Navigation IFF Radar Sensors Guidance systems Electronic warfare Sonobouys

Research & Metrology

Atomic clocks Instruments Astronomy & geodesy Space tracking Celestial navigation

Consumer

Watches & clocks Cellular & cordless phones, pagers Radio & hi-fi equipment TV & cable TV Personal computers Digital cameras Video camera/recorder CB & amateur radio Toys & games **Pacemakers** Other medical devices Other digital devices

<u>Automotive</u>

Engine control, stereo, clock, yaw stability control, trip computer, GPS

<u>Industrial</u>

Communications Telecommunications Mobile/cellular/portable radio, telephone & pager Aviation Marine Navigation Instrumentation Computers **Digital systems CRT** displays Disk drives Modems Tagging/ID Utilities Sensors

HYBRIDMEMS

D. Weinstein | Birck 2018.03.08

J.Vig, UFFC XO tutorial

Frequency Sources and Filters > 10GHz

O 10's GHz Filters/Oscillators:

O Automotive

O 5G

- O THz/mm-Wave imaging
- O THz spectroscopy

O Infrastructure

everythingrf.com

HYBRIDMEMS

QinteQ

comsol.com

Toward monolithic frequency sources

MEMS Resonators for frequency sources:

- High Q (f.Q ~ 10^{12} - 10^{14}) for low noise oscillators
- Small footprint
- Wafer-level fabrication & packaging

HybridMEMS

HYBRIDMEMS

CMOS-MEMS resonators

>10 GHz TCF < 1ppm/K In standard CMOS

Yole Développement, MEMS for Cell Phones and Tablets, 2012 4

SiTime

CMOS-friendly resonator transduction

Drive	Sense	
X	Х	• ε ₀ - •
X	Х	• 8•
X	Х	•p n•
X		$\overbrace{\bigtriangledown}^{\bullet} \overbrace{\bigtriangledown}^{\sigma(\Delta T)}$
	Х	••
	Х	
	Drive X X X X	DriveSenseXXXXXXXXXXXXXX

UNIVERSI

CMOS-friendly resonator transduction

Dielectric transduction

- Drawbacks of air-gap transducers
 - Fabrication complexity for release step
 - Low yield
 - Stiction
 - Particulates in gap
 - Costly packaging
- Our approach: dielectric film transducers
 - No stiction or particulate failure
 - Easier fabrication and integration
 - Improved performance at GHz frequencies

Weinstein, IEDM 2007

Dielectric transduction

Resonant Body Transistor (RBT)

- 1. Drive gate in accumulation ($V_{acc} + v_{in}$). No current flows, but capacitive force drives resonant motion.
- 2. Elastic waves at driving frequency form a standing wave in the body at resonance.
- Sense gate biased to strong inversion (V_G). As the fin vibrates, elastic waves modulate the drain current I_D piezoresistively.

RBT equivalent circuit

10

HYBRIDMEMS

Resonant Body Transistors

Nano Letters '10

Hilton Head '10

UN

ERS

First harmonic 114 nm fin width 15 nm Si₃N₄ dielectric films D. Weinstein | Birck 2018.03.08

CMOS Integration of Si MEMS

Back-end-of-line post-processing Front-end-of-line post-processing

W.-C. Chen, *JMM*, 2011

HYBRIDMEMS

J.-L. Lopez, EDL, 2009

Our approach: solid-state MEMS

Unreleased RBTs in 32SOI CMOS

First generation CMOS-MEMS resonators

Single FET for both drive and sense. Acoustic Bragg Reflectors in Si (FEOL)

Phononic Crystal based RBTs

- 1st Phononic Crystals (PnCs) in a standard **CMOS BEOL process**
- Vertical acoustic confinement
- **High-Q GHz-frequencies MEMS** resonators
- No post-processing
- No special-packaging
- **GF 32SOI:**
 - High-fT
 - **BOX: RF-feedthrough**

B. Bahr, R. Marathe, D. Weinstein IFFF IFCS14

PnC Waveguided Modes

True vertical confinement – laterally waveguided modes in FEOL CMOS

PnC Waveguided Modes

ERSITY

Termination of waveguided modes to form high Q resonator

Waveguided RBT

Geometry of RBT

• Differential drive and sense using multiple MOSCAPs/MOSFETs

HYBRIDMEMS

• Termination PnC to laterally confine resonance mode

Waveguided RBT

Measured frequency response

- Quality factors ranging from 8000 to 15000
- Improved spurious mode suppression
- Poor transduction efficiency resulting in low g_{em} (nS)

Resonant Fin Transistors

GLOBAL FOUNDRIES 14LLP TECHNOLOGY

HYBRIDMEMS BEOL Reflector in GF 14nm FinFET Technology

Bottom Confinement & Dispersion Characteristics

UN

ERS

Mode Shape & RFT Structure

freq(1)=3.372846e10 Surface: imag(solid.sx) (N/m²)

ERSI

Resonant Fin Transistor Unit Cell

oEpitaxial S/D Contacts

oDRC restrictions

- 03-Skip-4 Fin Configuration
 - \circ 14 fins / unit cell
 - 7th Spatial harmonic $k_x = \pi/a$

HYBRIDMEMS

oRFT:

- o 1 Sense Unit
- 10 Drive Units
- Full device has 154 fins
- \circ 6.8µm x 200nm

SEM Micrograph

Circuit Configuration of the RFT

RF Measurement Results

D. Weinstein | Birck 2018.03.08

Conclusion

- Phononic MEMS resonators now enable clocks and filters at GHz frequencies embedded in standard CMOS processes
- Technologically poised for large scale implementation in ICs
 - Unreleased resonators
 - Solid-state transduction
 - Si CMOS (FinFET, FeRAM), GaN MMIC
- We can now leverage these high Q systems for computation as well
 - Non-boolean logic (neural inspired inference)
 - Boolean phase-based logic

D. Weinstein | Birck 2018.03.08

Acknowledgements

- o Funding
 - DARPA YFA, NSF CAREER, Intel Early Career Award, DARPA UPSIDE
- o Students
 - o Yanbo He
 - o Bichoy Bahr
 - o Radhika Marathe
- o Collaborators
 - o GF: Zoran Krivokapic
 - o TI: Dennis Buss, Bichoy Bahr

