

Semiconducting Halide Perovskite Nanomaterials and Heterojunctions

Letian Dou

Assistant Professor Davidson School of Chemical Engineering Purdue University

PURDUE UNIVERSITY

Email: <u>dou10@purdue.edu</u> Website: <u>https://letiandougroup.com/</u>

Brick Nanotechnology Center, April 2018

Next generation Semiconductors

Conventional semiconductors

Si: Czochralski method

At 1900 °C $SiO_2 + 2 C \rightarrow Si + 2 CO$ At 300 °C $Si + 3 HCI \rightarrow SiHCI_3 (g) + H_2$ After purification: 99.999999%At 1100 °C $SiHCI_3 + H_2 \rightarrow Si + 3 HCI$ Electronic grade silicon: 99.999999%

III-V (GaAs): Metal Organic Chemical Vapor Deposition or Molecular Beam Epitaxy

Solution-processed semiconductors

Credit: Solarmer Inc.

Organic solar cells

Nat. Photon. 2012; Nat. Comm. 2013 (over 3000 citations)

Halide perovskite – (CH₃NH₃)Pbl₃

Miyasaka, JACS, 2009, 131, 6050 Snaith, Science, 2012, 338, 643 Yang, Science, 2014, 345, 542 Seok, Nature, 2015, 517, 476

Friend, Nature Nanotechnology, 2014, 9, 687 Sargent, Nature Nanotechnology, 2016, 11, 872

Huang, Nature Photonics, 2016, 9, 679 Park, Nature 2017, 550, 87

Halide perovskite – (CH₃NH₃)Pbl₃

Halide perovskite nano structures

M. Kovalenko et al., Nano Lett. 2015, 15, 3692

Nonconventional Synthesis

New Nanoscale Morphology (1D,2D)

CsPbBr₃ Nanowire growth

D. Zhang et al. JACS 2016 138, 13155

Nanowire growth

Nanowire growth

S. Eaton, S. Leone, P. Yang et al. Proc. Natl. Acad. Sci. 2016, 113, 1993

Optical Property

Optically driven CsPbBr₃ NW laser

In collaboration with Steve Leone

Optically driven CsPbBr₃ NW laser

- Low threshold $\sim 5\mu J \text{ cm}^{-2}$
- Multi-mode emissions

 Carrier lifetime shortened under lasing condition

S. Eaton, S. Leone, P. Yang et al. Proc. Natl. Acad. Sci. 2016, 113, 1993

CsPbBr₃ NW laser stability

S. Eaton, S. Leone, P. Yang et al. Proc. Natl. Acad. Sci. 2016, 113, 1993

Composition Tuning via Anion Exchange

F. Gao et al. J. Mater. Chem. C, 2016, 4, 3898

Localized anion exchange

PVSK heterojunctions

SEM-EDX mapping

AFM-KPFM study

All scale bars are 3 μm

L. Dou, N. S. Ginsburg, P. Yang et al, PNAS 2017

Summary for nanowires

- Colloidal synthesis of ultra thin CsPbBr₃ nanowire
- Substrate crystallization approach to synthesize CsPbX₃ nanowire
- Optically driven CsPbBr₃ nanowire laser
- CsPbX₃ nanowire heterojunction via localized anion exchange

 $(C_4H_9NH_3)_2PbBr_4$

- 1. Dissolve stoichiometric $PbBr_2:C_4H_9NH_3Br = 1:2$ in DMF
- 2. Dilute with DMF, chlorobenzene, and acetonitrile; concentration ~0.05%
- 3. Drop casting on SiO₂ substrate under mild heating (70~80 °C)

- 1. Dissolve stoichiometric $PbBr_2:C_4H_9NH_3Br = 1:2$ in DMF
- 2. Dilute with DMF, chlorobenzene, and acetonitrile; concentration ~0.05%
- 3. Drop casting on SiO₂ substrate under mild heating (70~80 °C)

L. Dou, A. Wong, Y. Yu, P. Yang et al. Science 2015, 349, 1518

Optical images

TEM characterization

2D sheets lattice constant: a = 8.45 Å, b = 8.67 Å Bulk: a = 8.22 Å, b = 8.33 Å

Composition and color tunability

(C₄H₉NH₃)₂PbCl₄ (i), (C₄H₉NH₃)₂PbBr₄ (ii), (C₄H₉NH₃)₂PbI₄ (iii), (C₄H₉NH₃)₂PbCl₂Br₂ (iv), (C₄H₉NH₃)₂PbBr₂I₂ (v), (C₄H₉NH₃)₂(CH₃NH₃)Pb₂Br₇ (vi)

L. Dou, A. Wong, Y. Yu, P. Yang et al. Science 2015, 349, 1518

Summary for 2D structures

- Substrate-guided solvent evaporation method to grow atomicallythin 2D perovskites
- Weak electronic coupling between layers
- Tunable optical properties by varying inorganic and organic parts
- Electron transport properties to be explored more

Phase transition of CsPbl₃

A. Walsh et al. Phys. Rev. B 2015, 91, 144107

Optical properties of CsPbl₃

How to make solar cells?

Phase transition of CsPbl₃

Smart PV windows

Device performance

J. Lin, M. Lai, L. Dou, P. Yang et al. Nature Materials 2018

Reversibility

J. Lin, M. Lai, L. Dou, P. Yang et al. Nature Materials 2018

Summary

Synergistic interests with BNC

Scalable Manufacturing of Aware and Responsive Thin Films

Nanophotonics and Quantum Optics

Nanoelectronics and Semiconductor Devices

Energy Conversion and Heat Transfer

Acknowledgements

- Ms. Dandan Zhang
- Mr. Connor Bischak •
- Dr. Jia Lin
- Dr. Samuel W. Eaton
- Dr. Andrew Wong
- Dr. Yi Yu
- Dr. Chris Kley
- Dr. Yiming Yang
- Prof. David Limmer
- Prof. Naomi S. Ginsberg
- Prof. Stephen R. Leone
- Prof. A. P. Alivisatos
- Prof. Peidong Yang

- Mr. Blake Finkenauer
- ton Dr. Yao Gao
 - Dr. Enzheng Shi
 - Dr. Dmitry Zemlyanov
 - Dr. Shibin Deng
 - Prof. Libai Huang

Thank you for your attention!