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Layout 

• A short long-story of conductive nitrides as optical conductors and their potential 
in plasmonics  
– Why the transition metal nitrides are good optical conductors? 

– Band structure and optical properties of continuous binary nitrides – identification of 
trends for plasmonics 

– Plasmonic performance of ternary nitrides: effects of blending, spectral tunability 

• Implications: 
– Refractory character: the blessing turning into a curse 

– Intrinsic point defects in group Vb and VIb nitrides 

– Process-related defects: radiation damage and stress development during sputter-
growth 

– Sputtering vs. alternative growth techniques: PLD 

– Extended vs. Local defects: grain/column boundaries vs. vacancies   

• Polycrystalline vs. Epitaxial conductive nitrides 
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Cubic (B1) Mononitrides of the Group IVb-Vb-VIb 
Transition Metals 

• One of the most widely studied and industrially implemented 
category of coating materials 

• High hardness, chemical stability, refractory character 

• Electron conductors – electronic applications 

• Archetypical examples:  
– TiN and ZrN for mechanical applications  

 (hard and wear-resistant coatings, among others) 

– TiN and TaN for electronic applications  

      (Schottky contacts, diffusion barriers,  

 ohmic contacts on GaN, etc) 

• Emerging applications: 
– Plasmonics 
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Nitrides for Plasmonics: TiN and ZrN 

The first hint 
Underestimated and undervalued 
(by ourselves!) 

‘At the nucleation stage of TiN/GaN, ϖpu exhibits much lower values 
than at the following stages of growth. This may be explained by the 
quasi-2D structure of the first deposited layer, which is equivalent with 
one TiN monolayer. The quasi-2D structure of the first layer may induce 
a surface plasmon vibration mode of the conduction electrons’ 
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The first report of plasmonic TiN 

Nitrides for Plasmonics: TiN and ZrN 
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The breakthrough! 

Nitrides for Plasmonics: TiN and ZrN 
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Nitrides for Plasmonics: TiN and ZrN 
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Issues for electronic, photonic and plasmonic devices 

Critical: 

• Electrical conductivity 

• Carrier density 
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Issues for electronic, photonic and plasmonic devices 

Critical: 

• Electrical conductivity 

• Carrier density 
• Zero real permittivity at optical 

frequencies  

• Control of Electronic losses 

• Control of Dielectric losses 

Desirable: 

• CMOS compatibility 

• Refractory character and durability 
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Issues for electronic, photonic and plasmonic devices 

Critical: 

• Electrical conductivity 

• Carrier density 
• Zero real permittivity at optical 

frequencies  

• Control of Electronic losses 

• Control of Dielectric losses 

Desirable: 

• CMOS compatibility 

• Refractory character and durability 
in strong fields 



Birck Nanotechnology Center 
Seminar, 04/30/2018 

 
 
 

Aristotle University of Thessaloniki 
Department of Physics 

www.physics.auth.gr 

Issues for electronic, photonic and plasmonic devices 

Critical: 

• Electrical conductivity 

• Carrier density 
• Zero real permittivity at optical 

frequencies  

• Control of Electronic losses 

• Control of Dielectric losses 

Desirable: 

• CMOS compatibility 

• Refractory character and durability 
in strong fields 

• Surface functionalization potential  

• Work function tunability (hot 
electrons) 
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What does it make a good optical conductor? 

When measuring DC or AC conductivity, we 
probe exclusively the conduction electrons; 
the DC/AC conductivity and mobility are 
affected only by the losses of the conduction 
electrons, either intrinsic (i.e. conduction 
electron density, electron relaxation time of 
the perfect single-crystal ), or extrinsic (e.g. 
due to electron scattering at grain boundaries, 
point defects, etc)  

In optical frequencies, we might probe 
bounded electrons, as well; consequently, the 
overall optical behavior would be screened by 
these bound electrons. Some authors call this 
screening ‘dielectric losses’.  
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Why are the nitrides better optical conductors than 
the corresponding metals? 
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Fukuda et al, Surf. Sci. 91, 165 (1980) Ti 

At  the end of the day… the DC/AC 
conductivity of the metals might be 
still better than of the nitrides. 
 
The nitrides are better conductors 
mostly in the optical (+NIR/MIR, UV) 
range. 
 
No need to revise your basic 
knowledge from  the physics labs! 
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LAPW Calculations: The source of conductivity and 
dielectric losses 
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LAPW Calculations vs. Experiment 
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LAPW Calculations: Dielectric Losses 
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•The dielectric losses are shifted to the UV with 
increasing Group number. 

•In B1 single-crystals, WN should be the best UV 
plasmonic material. Is it really? 

Consensus among 
optical calculations 
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LAPW Calculations: Dielectric Losses 
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•The dielectric losses are shifted to the UV with 
increasing Group number. 

•In B1 single-crystals, WN should be the best UV 
plasmonic material. Is it really? 

Alas, the stability of the B1 structure 
and the growth reality tell another 
story; that of exceptionally lossy  
B1-WN 
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LAPW Calculations: Electronic Losses 
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The electronic losses are increasing 
with increasing Group number 

This competition between electronic and 
dielectric losses with increasing Group 

number calls for an optimal compromise! 
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Experimental Dielectric Function Spectra of Binary 
Nitrides 
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Data from 
groups 
worldwide 
(Nancy, Poitiers, 
Strasbourg, 
Thessaloniki, 
Linköping, Uppsala, 
Augsburg, Aachen, 
Brno, Eindhoven, 
Lausanne, Barcelona, 
Coimbra,  
Urbana, Caltech, 
Purdue, RPI, Arizona, 
Texas,  Ibaraki, 
Alberta, etc) 
grown by 
Sputtering, 
CVD, ALD, CVA, 
IBD, etc 
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Experimental Dielectric Function Spectra of Binary 
Nitrides 
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The importance of screened plasma energy Eps 
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Experimental Dielectric Function Spectra of Binary 
Nitrides 
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Predictions: 
1) ZrN should be the 

best plasmonic 
nitride for the vis 
range and not the 
well studied TiN! 

2) This is due to the 
minimum 
electronic AND 
dielectric losses 
observed for ZrN 
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Predictions: 
3) After eliminating  

B1-WN, B1-TaN 
should be the next 
best UV 
plasmonic 
conductor.  

      Is it? 
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UV Plasmonics and Photonics 
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LSPR Spectra of Binary Nitrides: Going towards UV 
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The stunning B1-MoN: defect-stabilized 
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The stunning B1-MoN: defect-stabilized 
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The stunning B1-MoN: defect-stabilized 
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TMN-based compounds: Going towards IR and 
stabilizing UV 

• Tune the electronic properties, such as carrier density and 
dielectric losses, to control the plasmonic response 

• Tune the work function for hot electron applications 

• Improvement of the microstructure and the structural 
stability of the B1 phase (e.g. by microstructure  change 
from columnar to globular, stabilization of the B1 structure 
for TaN, and WN, etc) 
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Tuning of the conduction electron density: towards 
UV response 
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G.M. Matenoglou et al, Appl. Phys. Lett. 94, 152108 (2009) 
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B1 Ternary TMN – The lattice match effect: TixSc1-xN, 
TixY1-xN, TixLa1-xN, ZrxY1-xN 

No XRD fine structure 
Formation of Ternary Nitride (Solid Solution) 
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The best structural quality and the less optical 
loss is observed so far for TixSc1-xN 



Birck Nanotechnology Center 
Seminar, 04/30/2018 

 
 
 

Aristotle University of Thessaloniki 
Department of Physics 

www.physics.auth.gr 

LSPR Spectra of Ti-based Ternary Nitrides: From Red 
to UV 
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LSPR Spectra of Zr-based Ternary Nitrides 

Although ZrN IS be the best 
plasmonic nitride for the vis 
range,  

 
it is not the recommended 
blending element due to the 
large lattice size of ZrN 
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LSPR Spectra of Ti-based Ternary Nitrides: From Green 
to IR 
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An overall assessment of the current technology of 
plasmonic nitrides 
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The refractory character: Implications to growth and 
optical properties 

RT growth results in fine grains and porosity, and consequently to poor optical properties. 
Thus, sufficiently conductive nitrides are not compatible with self-assembly and mild lithography 
techniques, such as nanosphere lithography and makes RIE necessary.  
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What defects really do? 

Point defects: scattering of electrons AND 
trapping of them. i.e. varying carrier density. 
That’s why many groups reported TiN with 
plasmonic behavior in the IR 

Extended defects: exclusively scattering of 
electrons 
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Sputter deposition: Backscattered Ar+ 

SRIM Calculations: The heavier the target atoms the more the backscattered Ar+ trapped into the grown 
nitride 
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Sputter deposition: Backscattered Ar+ 

SRIM Calculations: The heavier the target atoms the more the backscattered Ar+ trapped into the grown 
nitride 

More point defects! 
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Sputter deposition vs. PLD (no Ar+) 

For PLD the grain size increases with the Ta-content, i.e. the grain refinenement observed in both 
sputtering configurations  is confirmed to be due to backscattering of Ar+ 
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Consequences to the optical properties: 
the case of TaN 
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Low pressure on Si = high BS = high 
density of point defects and extended 
defects 

High pressure = reduced BS due to gas 
collisions, but low surface diffusion = 
small grains and O impurities 

Low pressure on MgO = high BS but 
epitaxial films = high density of point 
defects and low density of extended 
defects 

PLD = no BS = mostly extended defects 

The film with extended defects 
outperforms the sample with 

point defects! 
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Defects beyond backscattering: PLD 

Even without  BS increasing the period number (i.e. the mass of 
the metal) we do report variations of grain size even for films 
strictly stoichiometric ([N]/[Me]=1), mostly associated with 
surface diffusion length of deposited adatoms. 
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Optical performance of epitaxial sputtered 
nitrides 
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In most cases, the PLD polycrystalline films outperform 
the sputtered epitaxial films; further support of the more 
severe effect of point defects compared to extended 
defects. 
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Summary and outlook – Part II: Regarding the 
defects and optical loss 

• We identified three electronic loss mechanisms 
that are manifested in TMN beyond TiN and 
ZrN: 
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Intrinsic Loss Enhancement 

1. The intrinsic electronic loss 
increase with mostly group 
number but also secondarily with 
period number of the constituent 
metal, as revealed by the LAPW 
calculations 

2.        The general tendency of reduced 
crystallinity, i.e. enhancement of 
extended defects, with the period 
number due to the limited surface 
diffusion of adatoms 

R
educed adatom

 diffusion 

3.        For sputtered growth the 
formation of point defects due to 
backscattered Ar+ 

Backscattered Ar+ 
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Summary and outlook – Part II: Regarding the 
defects and optical loss 

For low loss UV plasmonic nitrides (TaN, WN 
improved NbN, Mon), it is of utmost 
importance to minimize the point defects in the 
produced materials: 

• Sputter deposition is usually accompanied by 
the Ar+ BS: Use of other inert gases? 

• Halide CVD: Halogen impurities which act as 
point defects and increase severely the 
resistivity 

• MOCVD/ALD: Organic impurities which act as 
point defects and increase severely the 
resistivity 

• PLD: Limited scaling up potential 

• MBE:  high melting point of the constituent 
metal  and refractory products = extremely high 
temperatures 
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G.A. Olson, PhD, UIUC, 2015 We need to be creative! 
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Thank you for your attention! 
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