Jan Kaiser

Shuvro Chowdhury

Aniruddh Ghantsala Orchi Hassan

Brian Sutton

Rafatul Faria

Dr. Kerem Camsari

Zeeshan Pervaiz

p-bits for

Probabilistic

Spin Logic (PSL)

Supriyo Datta

PURDUE UNIVERSITY

Collaborators

Sayeef Salahuddin (UC Berkeley)

Joerg Appenzeller Zhihong Chen

Punya Debashis

https://arxiv.org/abs/ 1809.04028

Ernesto Marinero

1a. Bits & q-Bits

1b. Bits & q-Bits

1d. p-Bits

Hard disks MRAM / MTJ's - Stable magnets either 0 or 1 **Bits** Digital computing

Unstable magnets

p-bits

p- circuits *p*- computing

Single spins

delicate superposition of 0 & 1

q-bits

Quantum computing

2a. Adiabatic Quantum Computing

Optimization Problems E → Cost Function

2b. Probabilistic Spin Logic (PSL)

Adiabatic Quantum Computing

Optimization Problems

 $E \rightarrow Cost Function$

2c. Correlating versus Entangling

3a. SNN – PSL -- AQC

Adiabatic Quantum Computing

Stochastic Neural Networks

Binary Stochastic Neuron (BSN)

3b. SNN – PSL

Stochastic Neural Networks

3c. SNN – PSL

Stochastic Neural Networks

3d. Boltzmann Machines

\rightarrow Machine Learning

3e. Boltzmann Machines

\rightarrow Machine Learning

4a. Why Hardware?

• Speed • Power • Area

+0.4V $5 - 15K\Omega$ $\pm 0.1V$ $10K\Omega$ -0.4V $Time (ns) \rightarrow$

4c. Hardware Neuron

5a. Need third terminal

Binary Stochastic Neuron (BSN)

5b. Need third terminal

- Spin-orbit Torque (SOT)
- Magnetoelectric Effect (ME)

5c. Need third terminal

 $100K\Omega + 0.4V$ $100K\Omega + 0.4V$ $5 - 15K\Omega + 0.1V \Rightarrow \text{amplify}$ $10K\Omega + 0.4V$

5d. Need third terminal

6a. 1T/MTJ: Embedded MRAM

Low Barrier Magnet (LBM)

 $\Delta \lesssim 15 kT$

$$m_i = \operatorname{sgn}[\operatorname{tanh} I_i - \operatorname{rand}(-1, +1)]$$

6b. 1T/MTJ: Embedded MRAM

Speed
Power
Area

Hardware Accelerator

 $m_i = \operatorname{sgn}[\operatorname{tanh} I_i - \operatorname{rand}(-1, +1)]$

6d. Speed

lags (ns)

6e. *p*-Circuits

- Reciprocal
- Directed

Stochastic Neural Networks

- Machine Learning
- Inference

6f. p-Circuits

- Reciprocal
- Directed

Adiabatic Quantum Computing

- Optimization
 - Invertible logic
 - Factorization

7a. A directed circuit

7b. A directed circuit

7c. A directed circuit

7d. A directed circuit

$$\langle C1 \times C2 \rangle = \int_0^T \frac{dt}{T} C_1(t) C_2(t)$$

A	В	XNOR
0	0	1
0	1	0
1	0	0
1	1	1

7e. A directed circuit

7f. A directed circuit

8a. Boolean Logic

m ₁	m ₂	m ₃	m ₄	m ₅	
A	В	XNOR	AND	OR	
0	0	1	0	0	4
0	1	0	0	1	9
1	0	0	0	1	17
1	1	1	1	1	31

Boltzmann Machine

Boltzmann Law $P(m_1, \dots, m_N) \sim e^{-E}$

Minimum values of E for {m}'s belonging to truth table $E = -\frac{1}{2}m^t Jm$

8b. Boolean Logic

m ₁	m ₂	m ₃	m ₄	m ₅	
A	В	XNOR	AND	OR	
0	0	1	0	0	4
0	1	0	0	1	9
1	0	0	0	1	17
1	1	1	1	1	31

p-bit# 5

FM MgO LBM

p-bit

inverter

 V_{OUT}

{ m }

p-bit# 0

FM

MgO LBM

p-bit

 (I_i)

{ **I**

inverter

 V_{OUT}

 (m_i)

 $I_i(m_1 \cdots m_N)$

Minimum values of E for {m}'s belonging to truth table $E = -\frac{1}{2}m^t Jm$ m_0 m_1 m_2 m_3 m_4 m_5

 m_0 clamped to +1

8c. Boolean Logic

	Α	В	XNOR	AND	OR
4	0	0	1	0	0
9	0	1	0	0	1
17	1	0	0	0	1
31	1	1	1	1	1

8d. Boolean Logic

	A	В	XNOR	AND	OR
4	0	0	1	0	0
9	0	1	0	0	1
17	1	0	0	0	1
31	1	1	1	1	1

8e. Boolean Logic

8f. Boolean Logic

9a. Factorizer as inverse multiplier

b)

-

9d. Factorizer as optimizer

$$(p+q) \text{ p-bits} \quad \begin{bmatrix} x_p \dots x_1 \ 1 \end{bmatrix}$$
$$\underbrace{y_q \dots y_1 \ 1}$$
$$E(x_P \dots x_1; y_Q \dots y_1) = \left[\sum_{p=0}^P 2^p x_p \ \sum_{q=0}^Q 2^q y_q - N \right]^2$$

Minimum E for correct factors

$$I_i(m_1 \cdots m_N) = -\frac{\partial E(m_1, \cdots, m_N)}{\partial m_i}$$

9e. Factorizer as optimizer

9f. Factorizer as optimizer

10a. p-circuit & q-circuit q-circuit *p*-circuit FM inverter MgO LBM V_{OUT} V_{IN} p-bit {I} **m** } $I_i(m_1 \cdots m_N)$ **Stochastic** Neural **Networks**

10b. p-circuit & q-circuit

p-circuit

$$E = \sum_{i,j} J_{ij} \ m_i \ m_j$$

X 0001

q-circuit

Ζ

 $H = \sum J_{ij} \sigma_z^{(i)} \sigma_z^{(j)}$ $\overline{i,j}$

 $+\Gamma\sum\sigma_x^{(i)}$

Suzuki – Trotter decomposition

Ζ

Suzuki – Trotter decomposition

Ζ

10e. p-circuit emulating a q-circuit

p-circuit

Suzuki – Trotter decomposition

Quantum Boltzmann Law

$$\langle m_z \rangle = \frac{Trace \ [\sigma_z exp(-\beta H)]}{Trace \ [exp(-\beta H)]}$$

10f. p-circuit emulating a q-circuit

p-circuit

Classical	Quantum
many-body	many-body
system	system
Classical Interaction	Coherent Interaction

Classical	Quantum		
many-body	many-body		
system	system		
cf. Drift-diffusion	cf. NEGF		

11d. Science Editorial

http://science.sciencemag.org/content/361/6400/313

Once a real quantum computer is realized, what's next?

- In the coming decade, we can expect that some problem-solving will be optimized much more rapidly using quantum devices.
- We can also expect that efficient sampling from a probability distribution—the theoretical version of a machine learning algorithm—will become a place where quantum computers can shine.
- In the longer term, error correction and factoring may change the landscape further.

