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Mid-IR molecular ‘signature’ refgion 
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Molecular spectra in the spectral range of 3-10 μm 

*)  QCLs: pulsed mode, resolution 1-2 cm-1 

freq. comb 
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Fourier-transform spectroscopy 
(Michelson-interferometer spectroscopy)  

A. Michelson   
Nobel Prize in Physics 1907 

Fourier transform of the autocorrelation 
is the optical power spectrum  
 

Wiener-Khinchine theorem  

FT-IR 

Optical spectrum is encoded in the dependence 
of detector signal vs. beam path difference.   

spectrum 

detector signal Detector  

FFT 
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Dual-comb Fourier-transform spectroscopy 
Δt 
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Fourier 
Transform 

Spectrum 
Repetition rates of Comb 1 and Comb 2 
have small offset of Δ ~ 100 Hz 

Up to 1 000 000 spectral points in 10 ms 
with resolution ~ 100 MHz  (0.003 cm-1) 

Det. 

D. W. van der Weide, F. Keilmann, Coherent periodically pulsed radiation spectrometer, US Patent 5,748,309 (1998)  (filed 1995) 
S. Schiller, Spectrometry with frequency combs, Opt. Lett. 27, 766 (2002). 
F. Keilmann, C. Gohle, and R. Holzwarth, Time-domain mid-infrared frequency-comb spectrometer, Opt. Lett. 29, 1542 (2004). 
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Frequency-divide-and-conquer approach  
to producing broadband mid-IR combs  
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Ponytail motion 

The 2012 Ig Nobel Prize in Physics 
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Wong, Vodopyanov, Byer, JOSA B 27, 876 (2010) 
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Concept of a subharmonic ‘frequency-divide-by-two’ OPO 

frep frep 
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Subharmonic mid-IR OPO combs with a variety of pump lasers and NL crystals  

Femtosecond  
pump  

ω/2 ω 
nonlinear  
crystal 

Femtosecond pump laser Nonlinear crystal Spectral span Ref. 

Er-fiber at 1560 nm Periodically-poled lithium niobate, 200-500-µm long 2.5 - 3.8 µm Leindecker et al.,  
Opt. Express. 19, 6296 (2011) 

Cr:ZnSe at 2425 nm Orientation-patterned GaAs  500-µm long 4.4 - 5.4 µm Vodopyanov et al.,  
Opt. Lett. 36, 2275 (2011) 

Tm-fiber at  2050 nm Orientation-patterned GaAs  500-µm long 2.6 - 6.1 µm Leindecker et al.,  
Opt. Express. 20, 7046 (2012) 

Cr:ZnS at 2380 nm Orientation-patterned GaAs  500-µm long 3.6 – 5.6 µm Smolski et al.,  
Opt. Lett. 40, 2906 (2015) 

Tm-fiber at 1930 nm Orientation-patterned GaAs  500-µm long 2.6 – 7.5 µm Smolski et al.,  
Opt. Lett. 41, 1388 (2016) 

Er-fiber at 1560 nm Orientation-patterned GaP  500-µm long 2.3 - 4.8 µm Q. Ru  et al.,  
Opt. Lett. 42, 4756 (2017) 

Pump threshold ~ 10mW. Conversion officiency can be > 60%   
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Tm-fiber pumped 2.6–7.5 µm frequency comb based on OP-GaAs 

Smolski, Yang, Gorelov, Schunemann, Vodopyanov, Opt. Lett. 41, 1388 (2016) 
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OP-GaAs 

Mirror Mirror 

Orientation-patterned GaAs (OP-GaAs):  
• reversal period 51.5 µm 
• infrared cutoff of GaAs: 17 µm 

OPO engine 
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Coherence properties of a Tm pumped subharmonic OPO 

Smolski, Yang, Gorelov, Schunemann, Vodopyanov, Opt. Lett. 41, 1388 (2016) 
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Spectral span, Tm-fiber pumped subharmonic GaAs OPO 

Smolski, Yang, Gorelov, Schunemann, Vodopyanov, Opt. Lett. 41, 1388 (2016) 
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Molecular spectra in the spectral range of 3-10 μm 

QCL  

QCL  

QCL  

QCL  
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*)  QCLs: pulsed mode, resolution 1-2 cm-1 

freq. comb 
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Dual-comb spectroscopic system 

A pair of mutually coherent Tm-fiber 
combs (λ≈2 µm) with slightly different 
mode spacing are fceo locked and 
referenced to the same CW laser   

Two subharmonic OPOs are phase and frequency locked 
to the pump lasers; the mutual coherence time between 
the two OPOs is 40 sec. 

The optical spectra were 
referenced to radio 
frequencies only: the 
frequency counters for 
measuring frep and Δfrep, the 
frequency synthesizers that 
generated offsets for Tm-fibre 
combs, and the clock of the 
A/D card – were all stabilized 
against Rb-clock. 

Muraviev, Smolski, Loparo, Vodopyanov,  Nature Photon. 12, 209 (2018)  
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We can resolve all 350,000 modes with the finesse of 4,000 

Muraviev, Smolski, Loparo, Vodopyanov,  Nature Photon. 12, 209 (2018)  
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Mutual coherence 40 sec 

The moon is about 1.3 light-seconds away from the Earth. 
40 sec is about 30 distances to the moon 

OPO1 

OPO2 
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Mode resolved spectrum: N2O 

HITRAN 

Muraviev, Smolski, Loparo, Vodopyanov,  Nature Photon. 12, 209 (2018)  
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Coherent averaging 
of single 
interferograms 

2 µs 
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Normalized spectrum after taking Fourier transform 
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13CH4 

simulation 

experiment 
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OC34S 



Konstantin Vodopyanov  p. 29 

The amount of information obtained in ~1 sec is equivalent to a thick book 
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Dual-comb spectra of a mixture of gases at 3 mbar 
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Spectra of isotopologues detected in a mixture of gases at 3 mbar 
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Spectra of trace molecules in ambient air at 10 mbar 
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Acquiring spectral data at interleaved comb frequencies 

Tuning the frequency of the CW reference laser and thus shifting the combs allowed resolution 
below intermodal spacing (frep) 

Intermodal spacing (115 MHz) 

OCS absorption features 
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Absolute frequency referencing 

FS725 — 10 MHz Rb frequency standard  
accuracy  ± 5x10-11 
 

This converts to 4 kHz absolute referencing 

Frequency counters 
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Time picture: free induction decay of molecules 

The angular momentum of molecules is quantized: 

I - momentum of inertia 
J = 0,1,2, ...  

Hence the rotation speeds are quantized; the 
molecules periodically rephase (every T=2π/Δω) to 
generate additional pulses of coherently forward-
scattered light called commensurate echoes. 
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Free induction decay of molecules 

The angular momentum of molecules is quantized: 

I - momentum of inertia 
J = 0,1,2, ...  

Hence the rotation speeds are quantized; the molecules 
periodically rephase (every T=2π/Δω) to generate additional pulses 
of coherently forward-scattered light called commensurate echoes. 
 
Eeach type of molecules emits a train of subpicosecond pulses 
 

10-30 ps 

echoes 
incoming pulse 
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75 ps 

vacuum 

mixture of molecules 
Molecular vibrations were 
slowed down by 
25 billion times (2.5 x 1010) 

Hearing the molecules  
Molecules: 
CH4   N2O  CO  OCS  
   NO   CO2  H2O  
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Towards two-octave-wide span: 
Cr:ZnS - pumped OP-GaAs system 



Konstantin Vodopyanov  p. 41 

“Ti:Sapphire of the mid-IR” 
 
Broadband,  
High Kerr coefficient (3 times Ti:Sapph.) 
Convenient pumping: Er-fiber, Tm- fiber  
 
Rep. rate: 80 MHz – 1.2 GHz 
Duration: from 100 fs down to 19 fs 
Ave. power: up to 1.8 Watts from an oscillator  

Kerr-lens mode-locked Cr:Zns laser at ~ 2.35 µm 
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Tm laser pump 
(1.93 µm) 

Cr:Zns laser pump 
(2.35 µm) 

Parametric gain bandwidth for 500-µm-long GaAs 
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A subharmonic OPO based on 0.5-mm-thick OP-
GaAs pumped by a 62-fs Kerr-lens mode-locked 
Cr:ZnS oscilaltor (2.35 µm, 79 MHz, 800 mW). 

Broadband (3–9 µm) output.  
120 mW average power 
(Subharmonic conversion efficiency ~ 20%).   
OPO pump depletion 85%. 

Cr:ZnS - pumped OP-GaAs system 

Ru, Zhong, Lee, Loparo, Schunemann4, Vasilyev, Mirov, Vodopyanov,  CLEO ’2017 

Collaboration with Sergey Mirov’s group (UAB / IPG) 
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Spectral span, Cr:ZnS (2.35 µm) pumped subharmonic GaAs OPO 

subharm. freq. comb 
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High-power GHz  system, span 3–8 µm  

Pump: KLM Cr2+:ZnS laser 2.35 µm, 77 fs, 0.9 GHz, 6 W 
 
Subharmonic OPO based on a QPM OP-GaAs crystal.  
 
0.5-W output in the form of a broadband (3–8 µm) spectrum   

Smolski, Vasilyev, Moskalev, M. Mirov, Ru, Muraviev, Schunemann, S. Mirov, Gapontsev, Vodopyanov, Appl. Phys. B (in press)   

KLM Cr:ZnS laser 2.35 µm  
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Two octaves-wide supercontinuum in SiN waveguide  

Second harmonic of 
the Cr:ZnS laser 

Supercontinuum 
spectra 
generated in SiN 
waveguide 

KLM Cr:ZnS laser 2.35 µm  

Collaboration: 
 
S. Mirov group 
T. Kippenberg group 



Non-invasive diagnostics via breath  

Breath testing is probably the least invasive of all diagnostic tests. 
For centuries, physicians used  a “sniff test” of patient’s breath to 
diagnose conditions like diabetes. Breath is most informative 
medium: it contains a rich assortment (> 200) of volatile metabolites 
(usually in trace amounts)  that carry enough information about the 
body’s metabolism for an accurate diagnosis for many conditions.  
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acetone - 
diabetes 

nitric oxide - asthma 
methane - gut bacteria 

carbonyl sulfide - liver disease, transplant rejection 

ammonia – 
liver disease,  
renal failure 

ethane, pentane –  
lipid peroxidation 

carbon dioxide –  
stomach ulcer 

formaldehyde - breast cancer 

carbon monoxide - asthma, hyperbilirubinemia hydrogen cyanide  - cystic fibrosis 

ethane, pentane –  
lipid peroxidation 

Biomarkers in human breath 
... concept that breath contains molecules that originated from normal or abnormal physiology...  

Hippocrates of Kos Antoine Lavoisier Linus Pauling 

Animals can be used for sensitive diagnostics 
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Special thanks: 
 

• Highly coherent dual-comb subharmonic OPO system pumped by phase-locked Tm-fiber combs  

• Simultaneous acquisition of 350,000 spectral data points over 3.1–5.5 µm 

• Parallel detection of 22 trace molecular species in a mixture  including isotopes: 
 13C, 18O, 17O, 15N, 34S, 33S and 2H (deuterium) 

• Part-per-billion level sensitivity and sub-Doppler resolution.  

• Absolute optical frequency referencing to atomic clock  

• Feasibility for kilohertz-scale spectral resolution 

• Subharmonic combs - extendable to 2 octaves with 2.35 µm fs pump 
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