

Building College-University Partnerships for Nanotechnology Workforce Development

# X-Ray Photoelectron Spectroscopy (XPS)

### Outline

- Basic principles
- Instrumentation
- Peak characteristics
- Quantitative analysis
- Depth profiling

# X-Ray Photoelectron Spectroscopy (XPS)

- X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA), is used to determine quantitative atomic composition and chemistry.
- A sample is irradiated with monochromatic x-rays, resulting in the emission of photoelectrons whose energies are characteristic of the elements within the sampling volume.
- An XPS spectra is created by plotting the number of electrons verses their binding energy.

# Historical Notes on XPS

- Kai Siegbahn (b.1918): inventor of modern-day XPS was working at Uppsala University in Sweden in the 1950s and 1960s.
- Siegbahn was a physicist, and chose to call his method electron spectroscopy for chemical analysis (ESCA), because he understood the importance of the chemical information that XPS or ESCA can provide.
- Siegbahn shared the Nobel Prize for Physics (1981) for his work.



1918-2007

# X-ray Photoelectron Spectroscopy

- Based on Einstein's photoelectric effect.
  - Many materials emit electrons when light shines upon them
- Core electrons with kinetic energy E<sub>k</sub> are ejected by incident X-rays.

$$E_{K} = hv - E_{b} - \phi_{sp}$$

$$\begin{split} &\mathsf{E}_{\mathsf{K}} = \mathsf{kinetic} \ \mathsf{energy} \\ &\mathsf{E}_{\mathsf{b}} = \mathsf{binding} \ \mathsf{energy} \\ &\mathsf{h} = \mathsf{Planck's} \ \mathsf{constant} \\ &\mathsf{v} = \mathsf{frequency} \ \mathsf{of} \ \mathsf{X}\text{-}\mathsf{rays} \\ &\varphi_{\mathsf{sp}} = \mathsf{spectrometer} \ \mathsf{work} \ \mathsf{function} \end{split}$$



# X-Ray Photoelectron Spectroscopy (XPS)

- An x-ray beam usually comprised of k-alpha x-rays is focused on the sample.
- The absorption of incident x-rays results in the ejection of electrons.
- The energy of the ejected electrons is measured by the detector.



### X-Ray Photoelectron Spectroscopy



Released into the public domain by its author, Bvcrist at the English Wikipedia project.

### Energy of the ejected electrons



Released into the public domain by its author, Bvcrist at the English Wikipedia project.

# X-Ray Photoelectron Spectroscopy (XPS)

- Each atom has a unique XPS spectra.
- XPS can determine elemental composition, stoichiometry, electrical/chemical states and examine surface contamination.
- XPS is an elemental analysis technique that is unique in providing chemical state information of the detected elements, such as distinguishing between sulfate and sulfide forms of the element sulfur.

# Inelastic mean free path ( $\lambda_M$ )

- When an electron with kinetic energy E moves through a solid matrix M, it has a probability of traveling a certain distance before losing all or part of its energy due to an inelastic collision.
- The average distance traveled before such a collision is known as the inelastic mean free path λ<sub>M</sub>(E).



# Inelastic mean free path ( $\lambda_M$ )

- Since the energy ranges used in XPS analysis are typically 50–1200 eV, the values of λ are very small, corresponding to only a few monolayers.
- Photoelectrons must originate from atomic layers very close to surface to be detected.
- Therefore, the XPS technique is very surface-specific.



# XPS surface analysis

### What is a surface?

#### Surfaces

(3 atomic layers) using XPS and angle resolved XPS (ARXPS)

Ultra-thin films
(3-30 atomic layers) using XPS
and angle resolved XPS

#### Thin films

(3-600 atomic layers) using XPS in combination with sputter etching for profiling



# X-Ray Photoelectron Spectroscopy (XPS)

#### **XPS** is used to measure:

- $\succ$  elemental composition of the surface (top 1–10 nm usually)
- empirical formula of pure materials
- elements that contaminate a surface
- chemical or electronic state of each element in the surface
- uniformity of elemental composition across the top surface (or line profiling or mapping)
- uniformity of elemental composition as a function of ion beam etching (or depth profiling)



### Outline

- Basic principles
- Instrumentation
- Peak characteristics
- Quantitative analysis
- Depth profiling

- UHV System
- > X-ray source
- Electron analyzer
- Ion gun



#### **Ultra-High Vacuum System**

- Allows longer photoelectron path length
- Ultra-high vacuum keeps surfaces clean, preventing the contaminations to produce X-ray signal
- Pressure < 10<sup>-8 Torr</sup>
- Vacuum pumps
  - Roughing Pump
  - ≻Turbo Pump
  - ≻Ion Pump



#### X-ray source

- Dual Anode X-ray source
  - >Mg K $\alpha$  radiation: hv = 1253.6 eV
  - > AI K $\alpha$  radiation: hv = 1486.6 eV
- Monochromated using quartz crystal







X-ray Source XR 50 http://www.specs.de/cms/front\_content.php?idcat=118

#### **Electron analyzer**

- Lens system to collect photoelectrons
- Analyzer to filter electron energies
- Detector to count electrons



#### lon gun

- Sample cleaning
- Depth profiling
- > Ar<sup>+</sup> is the most widely used ion



### Outline

- Basic principles
- Instrumentation
- Peak characteristics
- Quantitative analysis
- Depth profiling

### XPS spectrum

Photoelectron peaks reflect discrete binding energies of the electrons present in the solid

> MoO<sub>3</sub> film excited by AI K $\alpha$  (1486.6 eV)



### XPS Peak: spin orbit coupling

- XPS peak is originated from the photoelectrons in the core-levels and valence band.
- ➤ In the quantum mechanics, the nomenclature for a core level is *nlj*:
  - n : principle quantum number
  - I: orbit angular momentum quantum number
  - > *j*: total angular momentum quantum number; j = l + s
  - > s : spin angular momentum quantum number, s=±1/2

#### If I=0, single XPS peak if I>0, a doublet peak-- spin orbit (I-s) coupling



### XPS Peak: spin orbit coupling

- Since s can be ±1/2, each level with I>0 is split into two sublevels with an energy difference known as the spin-orbit splitting.
- The degeneracy of each of these levels is 2j+1



| Orbital | I | J   | Degeneracy | Electron level    |
|---------|---|-----|------------|-------------------|
| 1s      | 0 | 1/2 | 1          | 1s                |
| 2s      | 0 | 1/2 | 1          | 2s                |
| 2р      | 1 | 1/2 | 2          | 2p <sub>1/2</sub> |
| 2р      | 1 | 3/2 | 4          | 2p <sub>3/2</sub> |
| 3d      | 2 | 3/2 | 4          | 3d <sub>3/2</sub> |
| 3d      | 2 | 5/2 | 6          | 3d <sub>5/2</sub> |
| 4f      | 3 | 5/2 | 6          | 4f <sub>5/2</sub> |
| 4f      | 3 | 7/2 | 8          | 4f <sub>7/2</sub> |

### **XPS** Peak intensities



#### Binding Energy (eV)

### XPS energy levels

The photoelectron's binding energy will be based on the element's final-state configuration.



# Energy lines

Photon energies, in eV, of principle K- and L- shell emission lines.

L \$ L<sub>β2</sub> **Kβ**<sub>1</sub> Lα L<sub>a</sub> L'n Kα Element Kαı 54.3 3 Li 4 Be 108.5 5 B 183.3 6 C 277 7 N 392.4 8 O 524.9 9 F 676.8 10 Ne 848.6 848.6 11 Na 1,040.98 1,040.98 1,071.1 1,302.2 12 Mg 1,253.60 1,253.60 1,557.45 13 Al 1,486.70 1,486.27 14 Si 1,739.98 1,739.38 1,835.94 15 P 2,013.7 2,012.7 2,139.1 16 S 2,307.84 2,306.64 2,464.04 17 Cl 2,622.39 2,620.78 2,815.6 18 Ar 2,957.70 2,955.63 3,190.5 19 K 3,313.8 3,311.1 3,589.6 20 Ca 3,691.68 3,688.09 4,012.7 341.3 341.3 344.9 399.6 21 Sc 4,090.6 4,086.1 4,460.5 395.4 395.4 22 Ti 4,510.84 4,504.86 4,931.81 452.2 452.2 458.4 4,944.64 5,427.29 511.3 519.2 23 V 4,952.20 511.3 572.8 582.8 24 Cr 5,414.72 5,405.509 5,946.71 572.8 5.898.75 5,887.65 6,490.45 637.4 637.4 648.8 25 Mn 6,403.84 6,390.84 7,057.98 705.0 705.0 718.5 26 Fe 776.2 791.4 27 Co 6,930.32 6,915.30 7,649.43 776.2 851.5 868.8 28 Ni 7,478.15 7,460.89 8,264.66 851.5 929.7 949.8 29 Cu 8,047.78 8,027.83 8,905.29 929.7 8,615.78 9,572.0 1.011.7 1.011.7 1.034.7 30 Zn 8,638.86 31 Ga 9,251.74 9,224.82 10,264.2 1,097.92 1,097.92 1,124.8 10,982.1 1,188.00 1,218.5 32 Ge 9,886.42 9,855.32 1,188.00 33 As 10,543.72 10,507.99 11,726.2 1,282.0 1,282.0 1,317.0 34 Se 11,222.4 12,495.9 1,379.10 1,379.10 1,419.23 11,181.4 35 Br 11,924.2 11,877.6 13,291.4 1,480.43 1.480.43 1,525.90 1,636.6 36 Kr 12,649 12,598 14,112 1,586.0 1,586.0 37 Rb 13,395.3 13,335.8 14,961.3 1,694.13 1,692.56 1,752.17 1,806.56 1,804.74 1,871.72 38 Sr 14,165 14,097.9 15,835.7 1,922.56 1,995.84 39 Y 14,958.4 14,882.9 16,737.8 1,920.47 40 Zr 15,775.1 15,690.9 17,667.8 2,042.36 2,039.9 2,124.4\* 2,219.4 2.302.7

X-ray data booklet, Lawrence Berkeley National Laboratory, 3<sup>rd</sup> edition, 2009

### XPS energy: chemical shifts

- When an atom makes a bond with another atom, the valence electron density changes resulting in an adjustment of the electrostatic potential affecting the core electrons.
- Change in the binding energies of the core electrons cause shifts in the corresponding photoelectron peaks

$$E_{K} = hv - E_{b} - \phi_{sp}$$

Atom loses valence charge, BE increases

 $\succ$  (Mo -> MoO<sub>2</sub>)

- Atom gains valence charge, BE decreases
  - $\succ$  (MoO<sub>3</sub> -> MoO<sub>2</sub>)



# XPS energy: chemical shifts

- Atoms of higher positive oxidation state show a higher binding energy
  - Extra coulombic interaction between the photoemitted electron and the ion core



| Element | level             | Compound          | Binding Energy<br>(eV) |  |  |  |
|---------|-------------------|-------------------|------------------------|--|--|--|
| Мо      | 3d <sub>5/2</sub> | Mo <sub>2</sub> C | 227.8                  |  |  |  |
| Мо      | 3d <sub>5/2</sub> | Мо                | 228.0                  |  |  |  |
| Мо      | 3d <sub>5/2</sub> | MoO <sub>2</sub>  | 229.4                  |  |  |  |
| Мо      | 3d <sub>5/2</sub> | MoS <sub>2</sub>  | 229.4                  |  |  |  |
| Мо      | 3d <sub>5/2</sub> | MoCl <sub>3</sub> | 230.0                  |  |  |  |
| Мо      | 3d <sub>5/2</sub> | MoCl <sub>4</sub> | 231.0                  |  |  |  |
| Мо      | 3d <sub>5/2</sub> | MoCl <sub>5</sub> | 232.2                  |  |  |  |
| Мо      | 3d <sub>5/2</sub> | MoO <sub>3</sub>  | 232.6                  |  |  |  |

### Outline

- Basic principles
- Instrumentation
- Peak characteristics
- Quantitative analysis
- Depth profiling

### Quantitative analysis

> Atomic concentration of elements can be calculated:

$$n_i = \frac{n_i}{\sum n_i}$$

 $n_i = \frac{I_{ij}/S_i}{\sum I_i/S_i}$ 

- > We define sensitivity factors:  $S_i = \sigma_{ij}\lambda(KE)$ 
  - $\succ$   $\sigma_{ij}$ : Photoionization cross-section of peak j of element i
  - >  $\lambda$ (KE): Inelastic mean free path length
- > Therefore,  $n_i$  is dependent on the peak area ( $I_{ii}$ ) and sensitivity factor

### Quantitative analysis

#### Atomic sensitivity factors for X-ray sources at 54.7°

| lement | Line              | ASF   | Element | Line              | ASF   | Element | Line              | ASF           | Flomont | Т. <b>с</b>       |   |
|--------|-------------------|-------|---------|-------------------|-------|---------|-------------------|---------------|---------|-------------------|---|
| Ag     | 3d                | 5.987 | Eu      | 4d                | 2.488 | Na      | le                | 1.685         | c;      | 2-                | • |
| AI     | 2p                | 0.234 | F       | 1s                | 1.000 | Nb      | 3d                | 2 921         | Sm      | 2µ<br>3d          |   |
| Ar     | 2p                | 1.155 | Fe      | 2p                | 2.957 | Nd      | 3d                | 5 671         | Sn      | 3den              |   |
| As     | 3d                | 0.677 | Ga      | 2p <sub>3/2</sub> | 3.720 | Ne      | 1s                | 1.340         | Sr      | 3d                |   |
| Au     | 4f                | 6.250 | Gd      | 4d                | 2.484 | Ni      | 2p                | 4.044         | Ta      | 4f                |   |
| В      | 1s                | 0.159 | Ge      | 2p <sub>3/2</sub> | 3.457 | 0       | 1s                | 0.711         | Tb      | 4d                |   |
| Ba     | 3d <sub>5/2</sub> | 7.469 | Hf      | 4f                | 2.639 | Os      | 4f                | 4.461         | Tc      | 3d                |   |
| Be     | 1 <b>s</b>        | 0.074 | Hg      | 4f                | 6.915 | Р       | 2p                | 0.486         | Te      | 3d <sub>5/2</sub> |   |
| Bi     | 4f                | 9.140 | Ho      | 4d                | 2.469 | · Pb    | 4f                | 8.329         | Th      | 4f <sub>7/2</sub> |   |
| Br     | 3d                | 1.053 | I       | 3d <sub>5/2</sub> | 6.206 | Pd ·    | 3d                | 5.356         | Ti      | 2p                |   |
| С      | 1s                | 0.296 | In      | 3d <sub>5/2</sub> | 4.359 | Pm      | 3d                | 4.597         | TI      | 4f ·              |   |
| Ca     | 2p                | 1.833 | ıl      | 4f                | 5.021 | Pr      | 3d                | 7.627         | Tm      | 4d                |   |
| Cđ     | 3d <sub>5/2</sub> | 3.974 | K       | 2p                | 1.466 | Pt      | 4f                | 5.575         | U       | 4f <sub>7/2</sub> |   |
| Ce     | 3d                | 8.808 | Kr      | 3d                | 1.287 | Rb      | 3d                | 1.542         | v       | 2p                |   |
| Cl     | 2p                | 0.891 | La      | 3d                | 9.122 | Re      | 4f                | 3.961         | W       | 4f                |   |
| Co     | 2p                | 3.590 | Li      | 1s                | 0.025 | Rh      | 3d                | 4.822         | Xe      | 3d <sub>5/2</sub> |   |
| Cr     | 2p                | 2.427 | Lu      | 4d                | 2.441 | Ru      | 3d                | <b>4</b> .273 | Y       | 3d                |   |
| Cs     | 3d <sub>5/2</sub> | 7.041 | Mg      | 2s                | 0.252 | S       | 2p                | 0.666         | Yb      | 4d                |   |
| Cu     | 2p                | 5.321 | Mn      | 2p                | 2.659 | Sb      | 3d <sub>5/2</sub> | 5.176         | Zn      | 2p <sub>3/2</sub> |   |
| Dy     | 4d                | 2.474 | Mo      | 3d                | 3.321 | Sc      | 2p                | 1.875         | Zr      | 3d                |   |
| Er     | 4d                | 2.463 | Ň       | 1s                | 0.477 | Se      | 3d                | 0.853         |         |                   |   |

C.D. Wagner, et al, Surf. Interface Anal. 3, (1981) 211.

### Outline

- Basic principles
- Instrumentation
- Peak characteristics
- Quantitative analysis
- Depth profiling

# Depth profiling

- To remove surface contaminations or find elemental distribution throughout the film thickness
  - ➤ Ar<sup>+</sup> energy: 1-3 KV
  - Sample rotation



# Depth profiling

#### Cu(In,Ga)Se<sub>2</sub> film deposited on ITO

Elemental distribution 1.0 - Cu Relative Peak Area 9.0 9.0 8.0 Ga Se Sn 0.2 0.0 90 120 150 180 210 240 270 0 30 60 Etch time (min)

Ga accumulation at the interface

Cu diffusion into the ITO layer

#### Ga 3d analysis



>

# Summary

Vacuum Range

- Requires ultra high vacuum
- Sample compatibility with UHV environment may be an issue with biological samples

Sensitivity

- Measures the elemental composition of the top 10 nm
- Can detect all elements except H and He
- Detection limits typically ~ 0.1 atomic percent
- > Typically the smallest analytical area  $\sim 10 \ \mu m$

Material analysis

- Can analyze metals, inorganic, polymers
- Sample compatibility with UHV environment

### **Online sources**

- PNNL EMSL: www.emsl.gov
- AVS Science & Technology Society: www.avs.org
- AVS Surface Science Spectra: www.avs.org/literature.sss.aspx
- Evans Analytical Group: www.cea.com
- NIST X-ray Photoelectron Spectroscopy Database: www.srdata.nist.gov/sps/
- NIST Electron Inelastic-Mean-Free-Path Database: www.nist.gov/srd/nist71.htm
- QUASES-IMFP-TPP2M QUASES-Tougaard Inc.: www.quases.com
- Surfaces & Interfaces Section, National Physical Lab. www.npl.co.uk/npl/cmmt/sis
- XPS MultiQuant www.chemres.hu/aki/XMQpages/XMQhome.htm
- ASTM International: www.astm.org