

Building College-University Partnerships for Nanotechnology Workforce Development

X-Ray Photoelectron Spectroscopy (XPS)

Outline

- \triangleright Basic principles
- \triangleright Instrumentation
- \triangleright Peak characteristics
- \triangleright Quantitative analysis
- \triangleright Depth profiling

X-Ray Photoelectron Spectroscopy (XPS)

- X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA), is used to determine quantitative atomic composition and chemistry.
- \triangleright A sample is irradiated with monochromatic x-rays, resulting in the emission of photoelectrons whose energies are characteristic of the elements within the sampling volume.
- \triangleright An XPS spectra is created by plotting the number of electrons verses their binding energy.

Historical Notes on XPS

- \triangleright Kai Siegbahn (b.1918): inventor of modern-day XPS was working at Uppsala University in Sweden in the 1950s and 1960s.
- \triangleright Siegbahn was a physicist, and chose to call his method electron spectroscopy for chemical analysis (ESCA), because he understood the importance of the chemical information that XPS or ESCA can provide.
- \triangleright Siegbahn shared the Nobel Prize for Physics (1981) for his work.

1918-2007

X-ray Photoelectron Spectroscopy

- **► Based on Einstein's photoelectric effect.**
	- \triangleright Many materials emit electrons when light shines upon them
- \triangleright Core electrons with kinetic energy E_k are ejected by incident X-rays.

$$
E_K = hv - E_b - \phi_{sp}
$$

 E_{K} = kinetic energy E_b = binding energy h = Planck's constant ν = frequency of X-rays $\varphi_{\rm{so}}$ = spectrometer work function

X-Ray Photoelectron Spectroscopy (XPS)

- \triangleright An x-ray beam usually comprised of k-alpha x-rays is focused on the sample.
- \triangleright The absorption of incident x-rays results in the ejection of electrons.
- \triangleright The energy of the ejected electrons is measured by the detector.

X-Ray Photoelectron Spectroscopy

Released into the public domain by its author, Bvcrist at the English Wikipedia project.

Energy of the ejected electrons

Released into the public domain by its author, Bvcrist at the English Wikipedia project.

X-Ray Photoelectron Spectroscopy (XPS)

- \triangleright Each atom has a unique XPS spectra.
- \triangleright XPS can determine elemental composition, stoichiometry, electrical/chemical states and examine surface contamination.
- \triangleright XPS is an elemental analysis technique that is unique in providing chemical state information of the detected elements, such as distinguishing between sulfate and sulfide forms of the element sulfur.

Inelastic mean free path (λ_M)

- \triangleright When an electron with kinetic energy E moves through a solid matrix M, it has a probability of traveling a certain distance before losing all or part of its energy due to an inelastic collision.
- \triangleright The average distance traveled before such a collision is known as the inelastic mean free path $\lambda_{\text{M}}(E)$.

Inelastic mean free path (λ_M)

- \triangleright Since the energy ranges used in XPS analysis are typically 50–1200 eV, the values of λ are very small, corresponding to only a few monolayers.
- \triangleright Photoelectrons must originate from atomic layers very close to surface to be detected.
- \triangleright Therefore, the XPS technique is very surface-specific.

XPS surface analysis

What is a surface?

□ Surfaces

(3 atomic layers) using XPS and angle resolved XPS (ARXPS)

 \Box Ultra-thin films (3-30 atomic layers) using XPS and angle resolved XPS

\square Thin films

(3-600 atomic layers) using XPS in combination with sputter etching for profiling

X-Ray Photoelectron Spectroscopy (XPS)

XPS is used to measure:

- \geq elemental composition of the surface (top 1–10 nm usually)
- \triangleright empirical formula of pure materials
- \triangleright elements that contaminate a surface
- \triangleright chemical or electronic state of each element in the surface
- \triangleright uniformity of elemental composition across the top surface (or line profiling or mapping)
- \triangleright uniformity of elemental composition as a function of ion beam etching (or depth profiling)

Outline

- \triangleright Basic principles
- \triangleright Instrumentation
- \triangleright Peak characteristics
- \triangleright Quantitative analysis
- \triangleright Depth profiling

- UHV System
- \triangleright X-ray source
- \triangleright Electron analyzer
- \triangleright lon gun

Ultra-High Vacuum System

- Allows longer photoelectron path length
- Ultra-high vacuum keeps surfaces clean, preventing the contaminations to produce X-ray signal
- ▶ Pressure < 10^{-8 Torr}
- \triangleright Vacuum pumps
	- Roughing Pump
	- **≻Turbo Pump**
	- **≻Ion Pump**

X-ray source

- **► Dual Anode X-ray source**
	- \triangleright Mg Ka radiation: hv = 1253.6 eV
	- \triangleright Al Ka radiation: hv = 1486.6 eV
- Monochromated using quartz crystal

X-ray Source XR 50 http://www.specs.de/cms/front_content.php?idcat=118

Electron analyzer

- **► Lens system to collect photoelectrons**
- \triangleright Analyzer to filter electron energies
- **► Detector to count electrons**

Ion gun

- \triangleright Sample cleaning
- \triangleright Depth profiling
- \triangleright Ar⁺ is the most widely used ion

Outline

- \triangleright Basic principles
- \triangleright Instrumentation
- \triangleright Peak characteristics
- \triangleright Quantitative analysis
- \triangleright Depth profiling

XPS spectrum

 \triangleright Photoelectron peaks reflect discrete binding energies of the electrons present in the solid

 M_3 film excited by Al Ka (1486.6 eV)

XPS Peak: spin orbit coupling

- \triangleright XPS peak is originated from the photoelectrons in the core-levels and valence band.
- \triangleright In the quantum mechanics, the nomenclature for a core level is *nlj*:
	- *n* : principle quantum number
	- *l* : orbit angular momentum quantum number
	- *j* : total angular momentum quantum number; *j = l + s*
	- \triangleright s : spin angular momentum quantum number, s= \pm 1/2

If l=0, single XPS peak if l>0, a doublet peak-- spin orbit (l-s) coupling

XPS Peak: spin orbit coupling

- Since s can be $\pm 1/2$, each level with ≥ 0 is split into two sublevels with an energy difference known as the spin-orbit splitting.
- \triangleright The degeneracy of each of these levels is 2j+1

XPS Peak intensities

Binding Energy (eV)

XPS energy levels

 The photoelectron's binding energy will be based on the element's final-state configuration.

Energy lines

 \triangleright Photon energies, in eV, of principle K- and L- shell emission lines.

X-ray data booklet, Lawrence Berkeley National Laboratory, 3rd edition, 2009

XPS energy: chemical shifts

- \triangleright When an atom makes a bond with another atom, the valence electron density changes resulting in an adjustment of the electrostatic potential affecting the core electrons.
- \triangleright Change in the binding energies of the core electrons cause shifts in the corresponding photoelectron peaks

$$
E_{K} = hv - E_{b} - \phi_{sp}
$$

 \triangleright Atom loses valence charge, BE increases

 \triangleright (Mo -> MoO₂)

- \triangleright Atom gains valence charge, BE decreases
	- \triangleright (MoO₃ -> MoO₂)

XPS energy: chemical shifts

- Atoms of higher positive oxidation state show a higher binding energy
	- \triangleright Extra coulombic interaction between the photoemitted electron and the ion core

Outline

- \triangleright Basic principles
- \triangleright Instrumentation
- \triangleright Peak characteristics
- Quantitative analysis
- \triangleright Depth profiling

Quantitative analysis

Atomic concentration of elements can be calculated:

$$
n_i = \frac{n_i}{\sum n_i}
$$

 $n_i = \frac{I_{ij}/S_i}{\sum I_i/S_i}$

- \triangleright We define sensitivity factors: $S_i = \sigma_{ij} \lambda (KE)$
	- \triangleright σ_{ii} : Photoionization cross-section of peak j of element i
	- \triangleright λ (KE): Inelastic mean free path length
- \triangleright Therefore, n_i is dependent on the peak area (I_{ii}) and sensitivity factor

Intensity Kinetic energy Peak area

Quantitative analysis

Atomic sensitivity factors for X-ray sources at 54.7o

C.D. Wagner, et al, Surf. Interface Anal. 3, (1981) 211.

Outline

- \triangleright Basic principles
- \triangleright Instrumentation
- \triangleright Peak characteristics
- \triangleright Quantitative analysis
- \triangleright Depth profiling

Depth profiling

- \triangleright To remove surface contaminations or find elemental distribution throughout the film thickness
	- \triangleright Ar⁺ energy: 1-3 KV
	- \triangleright Sample rotation

Depth profiling

\triangleright Cu(In,Ga)Se₂ film deposited on ITO

Elemental distribution Ga 3d analysis

▶ Cu diffusion into the ITO layer

Summary

Vacuum Range

- \triangleright Requires ultra high vacuum
- \triangleright Sample compatibility with UHV environment may be an issue with biological samples

Sensitivity

- \triangleright Measures the elemental composition of the top 10 nm
- Can detect all elements except H and He
- \triangleright Detection limits typically \sim 0.1 atomic percent
- \triangleright Typically the smallest analytical area ~10 µm

Material analysis

- Can analyze metals, inorganic, polymers
- \triangleright Sample compatibility with UHV environment

Online sources

- PNNL EMSL: www.emsl.gov
- AVS Science & Technology Society: www.avs.org
- AVS Surface Science Spectra: www.avs.org/literature.sss.aspx
- Evans Analytical Group: www.cea.com
- NIST X-ray Photoelectron Spectroscopy Database: www.srdata.nist.gov/sps/
- NIST Electron Inelastic-Mean-Free-Path Database: www.nist.gov/srd/nist71.htm
- QUASES-IMFP-TPP2M QUASES-Tougaard Inc.: www.quases.com
- Surfaces & Interfaces Section, National Physical Lab. www.npl.co.uk/npl/cmmt/sis
- XPS MultiQuant www.chemres.hu/aki/XMQpages/XMQhome.htm
- ASTM International: www.astm.org