

Progress in Vacuum Pressure Measurement

Dr. Martin Wüest

Balzers, Principality of Liechtenstein

Overview

- Historical Development, Drivers
- The most common vacuum gauge types
- Example of improving our product using rarefied gas dynamics
- Optical pressure sensing

What is Vacuum?

NFICON

VACUUM

PFEIFFER

8.03.2016

Early History

Barometer	McLeod	Bourdon	Pirani
1643 – 1860+	1874 – 1916+	1849 -	1906 -

mechanical

LINK

SECTOR

PINION

STATIONARY

SOCKET

electrical

The Quest for the Ultimate Vacuum

01.11.2018

5

Changing Markets

• Incandescent Lights

• Semiconductor

http://www.chineselight.com/uploads/130107/1_114009_1.jpg http://www.kitguru.net/wp-content/uploads/2014/07/semiconductor_umc_wafers.jpg

The Quest for Reproducibility

Semiconductor Manufacturing

8

Copy Exactly ! (build exactly the same)

Definitions

Improving Precision

Process Ranges

INFICON

Pressure [Pa]

Vacuum Pressure Sensors Ranges

INFICON

The Ubiquitous Four

• Capacitance Diaphragm Gauge

• Hot Ionization Gauge

• Pirani

Cold Cathode Gauge

Pirani in the Market Place

MARTE, Mars Environment Simulation Chamber

Jesus Sobrado, Juan Manuel Manchado and Jose Angel Martin-Gago Mimicking the Martian surface, Physics World, Aug 2015

INFICON

Hot Ionization Gauge

Hot Cathode Ion Gauge

INFICON

Hot Ionization Ranges

INFICON Manufactured Bayard-Alpert Hot Ionization Gauges

BAG052 BAG051 IE414 BAG402

INFICON

Martin Wüest

NFICON

Inverted Magnetron Ion Gauge

Inverted Magnetrons

Inverted Magnetron MPG550

Novel Magnet Design

B [T]

Low Magnetic Stray Field

direct

indirect

Ionisation Viscosity Convection Thermal Conductivity

Direct vacuum measurement (1)

Direct measurement of vacuum (2)

The deflection results from the net force of the pressure difference between the reference pressure (typical 10⁻⁷ Torr) and the pressure around the cell (outside pressure - inside pressure).

Direct measurement of vacuum

The capacitance C is given by the electrodes having a distance d and area A

$$C = \frac{\varepsilon_0 A}{d}$$

..and in case of deflection we see a change in capacitance, the distance d gets smaller:

$$\frac{\partial C}{\partial d} = -\frac{\varepsilon_0 A}{d^2}$$

The electrical sensitivity of a CDG defined as the relative change of the capacitance depends strongly on the distance d!

Martin Wüest

Membrane

- Ultrapure Al₂O₃ ceramic
- Polycrystalline
- High corrosion resistance
- Thicknesses down to 30µm
- Thinfilm gold electrode (reference cavity side)

INFICON

Martin Wüest

Capacitive Diaphragm Gauges

Martin Wüest

1ms

Innovative Portfolio

Functional Blocks of a CDG

Effect of Process Contamination on CDG's

Process byproducts that do not bond to the plasma shield (baffle) will deposit heavily around the center of the diaphragm

This results in uneven tensioning and weighting of the diaphragm causing changes which are typically seen as zero drift

As the deposition continues, the gauge will rapidly run out of zero adjustment and will need to be replaced.

Intentional Cu coating on CTR90, 10 Torr open sensor

INFICON

Process build-up on CDG's

Heavy process build-up on plasma shield

Process build-up around the center of the metallic diaphragm

S.A. Tison, Transition Flow, Applications in Semiconductor Fabrication, Gas Dynamics Workshop, 30. June 2003, Avila, Spain.

Observed Contaminations

Plasma shield pitting corrosion CR095-S 1330Pa SN 013 or 105 TiN

INFICON

CR096-S 10T SN225/SN333

Application	Ti/TiN	Ti/TiN
Product	CR096-S	CR096-S
Range	10 Torr	10 Torr
Serial number	225	333
Production / start warranty	31.5.2002 / ca.Okt.2002	12.11.2003 / 11.11.2003
Return	27.04.2006	27.04.2006
Precursors	$\begin{array}{l} TiCl_4,NH_3\\H_2,N_2,Ar\\ClF_3\end{array}$	$\begin{array}{l} TiCI_4, NH_3 \\ H_2, N_2, Ar \\ ClF_3 \end{array}$
Customer remarks	long time running	

SN 225

INFICON

SN 333

Design Improvements

Gauge inherent

Process related

Issues

- A vacuum pressure gauge should accurately measure pressure under all circumstances.
- Processes, in particular coating or etching applications, affect the accuracy of the sensor in the long run by deposition of material or etching of sensor elements.
- Usually this causes sensor signal drift or in the worst case destroys the sensor.

The goal of this investigation is

- to find methods to protect our gauges from process contamination in order
- to keep accuracy and
- to increase their life time on a process tool.

TiN Uses in Semiconductor Industry

• Contact Liner - Ti / TiN

- Diffusion barrier material between substrate and metal interconnects
- Prevent the diffusion of metal ions into the semiconductor material
- Films in the order of few 100nm

Capacitor electrodes - TiN

TiN Process Basic Chemistry

Process:

 $6TiCl_4(g) + 8NH_3(g) \longrightarrow 6TiN(b) + 24HCl(g) + N_2(g)$

Dry clean: $(CIF_3 + N_2 \text{ or } Ar)$

 $6TiN(b) + 8ClF_3(g) \longrightarrow 6TiF_4(g) + 4Cl_2(g) + 3N_2(g)$

Wet clean:

Isopropyl-Alcohol (C_3H_8O) + *De-ionized water* (H_2O)

By-product Reactions

 $NH_3 + HCl \longrightarrow NH_4Cl$

ammonium chloride
 is very reactive
 has a vapour pressure of 1Torr @160 C
 it sublimes and condensates at cold places

 $TiCl_4 + H_2O \longrightarrow TiO_2$ (white powder) + 4HCl

 $2Ti + 6HCl \longrightarrow 2TiCl_3 + 3H_2$

 $2TiCl_2 + HCl \xrightarrow{>500^{\circ}C} TiCl_2 + TiCl_3$

TiCl₂ = Very reductive May reduce water

 $TiCl_4 + 2HCl \longrightarrow H_2[TiCl_6](yellow) + 4HCl$

Surface chemistry mechanism for TiN deposition

Gas:	TiCl ₄ (g) NH ₃ (g)	HCl(g) N2(g)		
Surface	: TiCl ₃ (s) TiCl ₂ (s)	$\begin{array}{c} \text{TiCl(s) Ti(s) Ti}^{*}(s) \text{ NH}_{2}(s) \text{ NH}(s) \\ \text{N(s) N}^{*}(s) \text{ N}^{**}(s) \end{array}$	*	
Bulk:	Ti(b)	N(b)		
Titanium deposition:		А	E/R	
1.	1. $\begin{array}{l} TiCl(g) + NH_2(s) + Ti^*(s) \longrightarrow TiCl_3(s) + NH(s) + HCl(g) + \\ Ti(b) \end{array}$		1.6 10 ²⁴	7500
2.	$TiCl_4(g) + NH(s) + Ti$	*(s) \longrightarrow TiCl ₃ (s) + N(s) + HCl(g) + Ti(b)	1.6 10 ²⁴	7500
Nitrogen deposition:				
3.	$TiCl_3(s) + NH_3(g) + N(s) \longrightarrow TiCl_2(s) + NH_2(s) + HCl(g) + N(b)$		$2.5 \ 10^{22}$	7000
4.	$TiCl_2(s) + NH_3(g) + N(s) \longrightarrow TiCl(s) + NH_2(s) + HCl(g) + N(b)$		$2.5 \ 10^{22}$	7500
5.	$TiCl(s) + NH_3(g) + N(s)$	$s = Ti(s) + NH_2(s) + HCl(g) + N(b)$	$2.5 \ 10^{22}$	7500

Surface condensation:				
6.	$TiCl_3(s) + NH_2(s) \longrightarrow TiCl_2(s) + NH(s) + HCl(g)$	4 10 ¹³	7500	
7.	$TiCI_3(s) + NH(s) \longrightarrow TiCl_2(s) + N(s) + HCl(g)$	4 10 ¹³	7500	
8.	$TiCl_2(s) + NH_2(s) \longrightarrow TiCl(s) + NH(s) + HCl(g)$	4 10 ¹³	7500	
9.	$TiCl_2(s) + NH(s) \longrightarrow TiCl(s) + N(s) + HCI(g)$	4 10 ¹³	7500	
10.	$TiCl(s) + NH_2(s) \longrightarrow Ti(s) + NH(s) + HCl(g)$	4 10 ¹³	7500	
11.	$TiCl(s) + NH(s) \longrightarrow Ti(s) + N(s) + HCl(g)$	4 10 ¹³	7500	
Bond breaking:				
12.	$Ti(s) + N(s) \longrightarrow Ti^{*}(s) + N^{*}(s)$	$11 \ 10^{14}$	7500	
13.	$Ti(s)+N^{*}(s) \longrightarrow Ti^{*}(s) + N^{**}(s)$	$11 \ 10^{14}$	7500	
N ₂ liberation:				
14.	$2Ti(s) + 2N^{**}(s) + 2N(b) \longrightarrow 2Ti^{*}(s) + N_2(g) + 2N(s)$	9.3 10 ³⁰	7500	

M. D. Allendorf, A. Arsenlis, R. Bastasz, M. E. Colvin, G. Evans, G. Germann, C. L. Janssen, R. S. Larson, C. F. Melius, T. H. Osterheld, D. A. Outka, M. L. Schulberg, P. Ho, and I. M. B. Nielsen, *Development of a process simulation capability for the formation of titanium nitride diffusion barriers,* Sandia National Laboratories, 1997, p. 40.

Stream Function CVD Reactor

Profiles of Mass Fractions

Validation Results

Validation Results

- The surface and gas-phase mechanisms for the TiN chemical vapor deposition process were developed based on literature data.
- Simulations were performed for a typical geometry and operating conditions of a CVD reactor and also for the transport and chemistry inside a gauge.
- The performed simulations indicate that powder deposition rate could be similar or even exceed the TiN deposition rate inside the gauge.
- Cold spot of 60 °C in gauge tube causes deposition of by-products.
 - Can reproduce deposition profile
- TiN etching by CIF₃ is not efficient since the products of etching quickly fill in the gauge and the etching stops. Cleaning is efficient only close to reactor wall.

Gauge Designs

INFICON CDG160A Plasmashield Suprashield Crossshield

INFICON CDG160D Helix Crossshield

Competitor A

Martin Wüest

Competitor B

TiCl₄ + NH₃ Process in a CDG 160A with Plasma Shield Spatial Mass Fraction Profiles

INFICON

Martin Wüest

Comparison Deposition Profile along Membrane

NFICON

Plasmashield

Martin Wüest

Helix

3D Pressure Profile During Pressure Change 10⁻⁶ mbar to 1000 mbar in the Reactor

Re

Pressure

1 ms to reach equilibrium at end of helix

Re < 2300 laminar

Re > 4000 turbulent

Stress on Membrane as Function of Time

Plasmashield

Helix

2 ms to reach equilibrium

1.6 ms to reach equilibrium

2D Sim

Pressure/Knudsen Number (x, t)

Plasmashield

Helix

At Exit of Helix

3D Sim

Summary Dynamics

Response to step pressure change 10⁻⁶ mbar to ATM

Ranking	Name of the gauge	Time (µs)
1	CDG160D with spiral baffle system	1600 (CFD-ACE)
2	CDG160A gauge with plasma shield	2000 (CFD-ACE) 2000 (Fastran) 2000 (UFS)
3	CDG160D gauge with a spiral baffling system and cross shield	2200 (CFD-ACE)
4	Competitor B gauge	3000 (CFD-ACE)
5	CDG160A gauge with plasma and supra shields	6000 (CFD-ACE) 20000 (UFS)
5	Competitor A gauge	6000 (CFD-ACE)

Significant difference between the results obtained with CFD-ACE and UFS for a CDG160A gauge with plasma and supra shields was attributed to different gas-surface models implemented in the codes.

INFICON

Martin Wüest

Membrane Contamination

INFICON

Best Membrane Protection

1. CDG160A with Plasmashield + Suprashield (G4 geometry)

has the smallest powder deposition rates at both 0.2 s and 1 s.

- 2. CDG160A with Plasmashield + Cross shield (G7 geometry)
- 3. CDG025D + Helix (G2)
- 4. CDG025D + Helix + Cross shield (G3)
- 5. Competitor A (G6)
- 6. Competitor B (G5) largest at 0.2 s, but they are smaller than G1 at 1 s.
- 7. CDG160A + Plasmashield (G1)

INFICON

Process Drift Improvement

Summary of Simulation

- Using a CFD computer code we have investigated membrane contamination and gas dynamical response time in a TiN process for 7 different geometries.
- Position of gauge in process has great influence on chemistry seen by gauge.
- Baffle geometry and gas dynamics in a gauge have a strong effect on the contamination of the membrane and the speed of response.
- INFICON has best in class gauge protection available.

Small Scale CDGs

Pirani

Thermal Conductivity Sensor

a) Heat loss through radiation

$$W_{gas, v} \propto f\left(oldsymbol{arepsilon}_{p}, oldsymbol{arepsilon}_{W}
ight) \!\! imes \!\left(\!T_{p}^{\,4} - T_{W}^{\,4}
ight)$$

b) Heat conductance from filament to support

$$W_{solid} \propto \frac{\partial T_p}{\partial x} \bigg|_{@ends}$$

- c) Heat conductance through gas
 - Molecular flow (Kn > 0.5) $W_{gas,m} \propto \frac{a_E}{\sqrt{m}} \frac{(T_p - T_w)}{\sqrt{T_w}} \times p$
 - Viscous flow (Kn < 0.01)

$$W_{gas,v} \propto rac{\left(T_p - T_W\right)}{\sqrt{m}} \times f(d)$$

• Transition flow (0.01 < Kn < 0.5)

Pirani Sensor Elements

Martin Wüest
Issues

- Increase upper pressure limit
- Increase lower pressure limit
- Increase accuracy
- Increase process inertness
- Increase dynamics
- Decrease size

Range Extensions

Increasing the Upper Pressure Limit:

1. Use of convective transport

Convection enhanced gauge

- ✓ Increased sensitivity at atmospheric pressure
- Orientation dependence
- ✗ Large volume needed
- Slow dynamics

Pirani filament at tilted angle

Alternative designs, e.g. Edwards APGX

- ✓ Reduced orientation dependence
- Smaller but still substantial volume
- Slow dynamics

Increasing the Upper Pressure Limit:

2. **Reduce mean free path**

Reduce distance Pirani – Wall \rightarrow MEMS

- Increased sensitivity at atmospheric pressure \checkmark
- Good dynamics \checkmark

Doms et al., J. Micromech. Microeng., 15, 1504-1510, 2005

Increasing the Upper Pressure Limit:

3. Measurement of gas' heat capacity

Use time variable Pirani temperature $T_p(t)$

a) Pulsed heating mode

Jitschin and Ludwig, Vacuum 75, 169-176, 2004

b) Superposition of AC temperature signal on stationary *Tp*

D.J. Seong et al., Key. Eng. Mat., **277-279**, 990-994, 2005.

- Conventional Pirani sensor may be used
- Medium to slow dynamics (1-10 Hz)

W. Jitschin et al., Vacuum, 75, 169-176, 2004.

Reducing the Lower Pressure Limit

 $W_{gas} \ll W_{rad}, W_{solid}$

1) Radiation losses

• Reduce Pirani temperature

MEMS

use low emissivity materials

Reducing the Lower Pressure Limit

2. Heat losses through Pirani filament ends

• typically dominate over radiation losses

 $W_{solid} >> W_{rad}$

- increase filament length
 - helicoidal filament
- inhibit thermal flux from heated Pirani element to support through bridges
 - high thermal resistance bridges between support and Pirani-membrane in MEMS-Pirani
 - heated bridges

A. W. Van Herwaarden et al., Sensors & Actuators, **14**, 259-268, 1988.

P. K. Weng et al., Rev. Sci. Instrum., **65**, 492-499, 1994.

J. Schieferdecker et al., US005597957A

A Comparison

Conventional Pirani with helicoidal filament

- ✓ Robust and reliable
- Good long term stability \checkmark
- Good dynamics
- Low price \checkmark
- Limited sensitivity @ $p < 10^{-4}$ mbar and $p > 10^{2}$ mbar * Price ×
- Gas type dependence ×

Convection enhanced Pirani

- Increased sensitivity at $p > 10^2$ mbar \checkmark
- Large volume ×
- Slow dynamics x
- Dependence on mounting orientation x
- Gas type dependence ×

MEMS-Pirani

- Extended low pressure range when W_{solid} is reduced
- ✓ Better sensitivity at atmospheric pressure due to
- ✓ Small volume
- Good dynamics
- - Contamination \succ limited long term stability ×
 - Gas type dependence ×

Heat capacity measuring Pirani

- ✓ Increased sensitivity at $p > 10^2$ mbar
- ✓ Low price as based on conventional Pirani
- Medium to slow dynamics
- Gas type dependence ×

Carbonized filament

Fluorine Etch of W Wire

Dry etch application: CHF₃, CF₄, C₄F₆, CH₂F₂, C₄F₈

W is not resistant to those gases.

- -> Wire gets thinner
 - ->Resistance increases

Eventually gauge failure after 2 weeks

The measured diameter of a new W wire amounts to approx. 10.7µm (with tolerances)

 $R = \rho \frac{l}{A} = \rho \frac{l}{\pi r^2}$

The measured diameter of the W wire of SN:4132 amounts to approx. 6.9 µm (with tolerances)

INFICON

W Filament 10 min in 40% HF Solution

Martin Wüest

PSG502 Ni Filament with HF

Pirani in liquid (!) HF

Nickel

Tungsten

Experiment conditions: HF 40% 10 minutes

Critical Materials: ZnO

Accuracy PSG vs. PCG

CDG Controlled Reference Pressure [mbar]

Insufficient Corrosion Resistance

P

What is the Ceramic Coated sensor?

The Ceramic Coated Pirani is a fully AI_2O_3 coated sensor. The ceramic coating prevents the sensor from corrosion in harsh environment.

To investigate that the coating is sealed, we run tests with H_2O_2 and saw that the ceramic coated filament showed no dissolution or corrosion whatsoever.

Coated filament after 60 min in $50 \% H_2O_2$ at 25 °C

Uncoated tungsten filament after 60 min in 50 % H₂O₂ at 25 °C

Testing

When moving closer into the SEM picture we see that the coated filament still has the exact same diameter then before the test. The uncoated filament has been eaten down to more then the half of the original diameter.

coated filament after 60 min in 50% H₂O₂ at 25 °C

uncoated tungsten filament after 60 min in 50% H₂O₂ at 25 °C

Original wire diameter = Coating thickness =

10.6 μm 0.08 μm

Wireless Pressure Sensing

Sofia Toto, Ph.D. Thesis, Karlsruhe Institute of Technology, 2018

INFICON

Martin Wüest

Manufacturing

INFICON

Martin Wüest

Manufacturing: Automation

Manufacturing: SPC Pirani

INFICON

Manufacturing: Optical Inspection Tool

			Einrichtung	Produktion (Kontrolle)	Nachkontrolle	Benutzer Modus	Hilfe
Barcodenummer: Gefundene Einträge:	A22J00066 A22J00072 Bsp. gut April 2011 Bsp. schl April 2011 Nov. 2010	Resultate Schweissnahtkontrolle-Test vom 13.04.2011 09:31 Verarbeitungszeit 188 ms Information Für diesen Test wurden 20 Bilder auf dem Datenträger mit der ID 1 gespeichert. Momentan ist der Datenträger mit der ID 1 angeschlossen. Aktuelle Konfiguration laden Konfiguration beim Test laden					
Barcodenummer: Seriennummer: Produktnummer: Flanschtyp: Gehäusetyp: 13.04.2011 09:31 Benutzername Fl Matrixcode Fa Schweissnaht Fa Dichtungsfläche Fa Plasmablende O IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Bsp. schl April 2011 456 3333 testflansch testgehaeuse Fehler Pehler Details ehler Details k Details Fehler Fehler	Status Verarbeitungszeit:					
4otor 🔴 SPS 🔴	Inficon PC 🔵 Kam	era 🥚 Externe - HD 🌒			Not Aus 🧲	Automatik Bet	rieb 🧲

INFICON

Factory Calibration

Optical Methods

INFICON Optical Diaphragm Gauge

Martin Wüest

NIST FLOC

Martin Wüest

NIST

NIST FLOC

NIST FLOC

- Compared to NIST Hg Standard
 - 35x better resolution 0.1 mPa (10⁻⁶ mbar), Cube: 0.95 ppm F.S. = 9.6x10⁻⁴ mbar @ Atm)
 - 100 x faster
 - Covers 8 decades of pressure in one instrument
 - Negligible hysteresis 8 μPa/hr
- Customer calibrations will be done now on new system

FLOC: 15.5 x 5 x 5 cm³ + laser optics

Cube: 19.45 x 11.0 x 10.3 cm³ incl. all electronics

University of Umea: GAMOR

Silander et al., Gas modulation refractometry for high-precision assessment of pressure under non-temperature-stabilized conditions, JVST A36, 03E105 (2018)

INFICON

Martin Wüest

Summary

- Gauges are becoming more robust for industrial processes
- To achieve this requires a deep understanding of many different fields of science
- Optical methods are being established for standards laboratories

Vacuum Control in Liechtenstein

