Spatially Resolved Electrochemical Imaging on Energy Materials

<u>A. Kumatani^{1,2}</u>

1 Advanced Institute for Materials Research (AIMR), Tohoku University. 2 Graduate School of Environmental Studies, Tohoku University.

8th Oct. 2018, Birck Nanotechnology Center, Purdue University

Self-developed Scanning Electrochemical Microscopy

Nanoscale Electrochemical Imaging

Li⁺ transport

Composite electrode

 \cdot Thin film

SECCM: scanning electrochemical cell microscopy

Advanced Institute for Materials Research

Established in 2007 till 2016 World Premier International Research Center Initiative by MEXT

AIMR

Advanced Institute for Materials Research Tohoku University (since 2017)

Selected as **Designated National University**: Material Science and Spintronics

"Quantum Materials and Spintronics" (QMS) Lab. in AIMR, Tohoku Univ.

to work on a wide range of quantum materials

(<u>2D materials</u> and their heterostructures and topological materials) including device fabrications, transport measurements, characterizations

Spatially Resolved Electrochemical Imaging on Energy Materials

<u>A. Kumatani^{1,2}</u>

1 Advanced Institute for Materials Research (AIMR), Tohoku University. 2 Graduate School of Environmental Studies, Tohoku University.

8th Oct. 2018, Birck Nanotechnology Center, Purdue University

Self-developed Scanning Electrochemical Microscopy

Nanoscale Electrochemical Imaging

Li⁺ transport

Composite electrode

 \cdot Thin film

SECCM: scanning electrochemical cell microscopy

Outline:

- 1. Key technique for Electrochemical Imaging: Scanning Electrochemical Cell Microscopy (SECCM)
- 2. Visualization of Electrochemical Activities
 - 2-1. Lithium-ion Transport
 - Practical/model electrodes
 - 2-2. Mediator redox (Ru^{3+/2+})
 - Graphene, NbSe₂
 - 2-3. Hydrogen evolution / Oxygen reduction reaction
 - SnS_2 , BN
 - **2-4. Other application:**
- 3. Conclusion

For lithium-ion batteries (LIBs) :

For lithium-ion batteries (LIBs) :

For lithium-ion batteries (LIBs) :

Prof. T. Matsue Grad. Sch. of Env. Studies Matsue Lab. in AIMR Tohoku Univ. and Vice president of ISE Assoc. Prof. Y. Takahashi Current add.: Electrochemistry WPI-NanoLSI Kanazawa Univ. Electrochemical Scanning probe imaging **Integrated Devices** Hair cell 1 µm $\times 2$ Tissue Engineering **Bio-LSI devices 11** µm Enzyme activity (Glucose **Electrochemically monitoring** Oxidase) movement of water flea Optical Electrochemical 50 451 pA 0 nA 6.4 µm 380 pA 0.0 µm 3.2 µm

Electrochemical images of embryoid bodies (ES cells)

Control of cell growth and direction

4

SECM Families in Matsue Lab.:

Scanning Ion Conductance Microscopy(SICM)

neural network in hippocampus

6.6 µm

Visualization of dynamics on microvillus

90 s/frame : 64 x64

Scanning Electrochemical Microscopy(SECM)

Enzyme activity (Gox)

Y. Takahashi, <u>A. Kumatani</u> et al., Nature Communications 2014.

Y. Takahashi, <u>A. Kumatani</u> et al., Nature Communications 2014.

Y. Takahashi, A. Kumatani et al., Nature Communications 2014.

nano-scale cell simulator

DMC: dimethyl carbonate

8

Y. Takahashi, <u>A. Kumatani</u> et al., Nature Communications 2014.

SECCM System setup


```
Inside glove-box (H_2O: < 0.1 ppm O_2: < 0.1 ppm)
```

resolution:	x,y-axis	50 nm
	z-axis	few nm
scan-size:	up to <mark>50 × 50 µm</mark>	

Y. Takahashi, <u>A. Kumatani</u> et al., Nature Communications 2014.

10

Y. Takahashi, <u>A. Kumatani</u> et al., Nature Communications 2014.

Scanning(Visualization)

11

nano-scale cell simulator

LiFePO₄ composite electrode from Kanamura Lab. in Tokyo Metropolitan Univ.

Y. Takahashi, <u>A. Kumatani</u> et al., Nature Communications 2014.

Scanning(Visualization)

LiFePO₄ composite electrode from Kanamura Lab. in Tokyo Metropolitan Univ.

nano-scale cell simulator

Other SPM Families

ESM: Electrochemical strain microscopy, EC-STM: Electrochemical-STM SICM: Scanning ion conductance microscopy, SECM: Scanning electrochemical microscopy

Other SPM Families

S. K. Jeong et al., J. Electrochem. Soc. 2001.

N. Balke et al., Nat. Nanotech. 2010. EC-STM

M. Inaba et al., Chem. Lett. 1995. **SICM**

A. L. Lipson et al., Adv. Mater. 2011.

M.S.H. Bülter et al., Angew. Chem. 2014.

Other secondary batteries: - Li⁺, Na⁺, K⁺, Mg²⁺ etc

Redox (mediator): - $Ru^{2+/3+}$, ferrocenemethanol etc

Electrocatalytic reaction:

- oxygen reduction reaction (ORR)

- hydrogen evolution reaction (HER)

Other electrochemical activities:

- nanotube detection / - corrosion etc

Bulk vs Local measurement

Outline:

- 1. Key technique for Electrochemical Imaging: Scanning Electrochemical Cell Microscopy (SECCM)
- 2. Visualization of Electrochemical Activities

2-1. Lithium-ion Transport

- Practical/model electrodes
- 2-2. Mediator redox (Ru^{3+/2+})
 - Graphene, NbSe₂
- 2-3. Hydrogen evolution / Oxygen reduction reaction
 - SnS_2 , BN
- **2-4. Other application:**
- 3. Conclusion

LiFePO₄ composite electrode (LiFePO₄ microparticle + Acetylene Black + PVdF)

7

Topography

Current response

 $V_{applied} = 0.65 V vs. Ag/AgCl$ (3.65 V vs Li/Li+)

LiFePO₄ composite electrode (LiFePO₄ microparticle + Acetylene Black + PVdF)

7

 $0\ \mu m$

Topography

SEM

LiFePO₄ composite electrode (LiFePO₄ microparticle + Acetylene Black + PVdF)

Current response

17

LiFePO₄ composite electrode (LiFePO₄ microparticle + Acetylene Black + PVdF)

7

Topography

Current response

 $V_{applied} = 0.65 V vs. Ag/AgCl$ (3.65 V vs Li/Li+)

LiFePO₄ composite electrode (LiFePO₄ microparticle + Acetylene Black + PVdF)

Current response

Silicon/carbon negative composite electrode

CV results in bulk

1 µm

Silicon/carbon negative composite electrode

Silicon/carbon negative composite electrode

FeO₆

Li

LiFePO₄ multi-crystalline thin film

LiFePO₄ thin film from Hitosugi Lab. in Tokyo Inst. of Tech.

 2θ (degree)

Lithium-ion transport

E/V vs. Ag/AgCl

Future collaboration: All-solid state batteries

Outline:

- 1. Key technique for Electrochemical Imaging: Scanning Electrochemical Cell Microscopy (SECCM)
- 2. Visualization of Electrochemical Activities
 - 2-1. Lithium-ion Transport
 - Practical/model electrodes
 - 2-2. Mediator redox (Ru^{3+/2+})
 - Graphene, NbSe₂
 - 2-3. Hydrogen evolution / Oxygen reduction reaction
 - SnS_2 , BN
 - 2-4. Other application:
- 3. Conclusion

Research Background

From Nanowerk HP

2D Materials

Research Objectives

2D materials are great electrochemical performance! But why?

Possible factors :

- 1. Defects
- 2. Edge structures
- 3. Number of layers
- 4. Chemical doping etc

We challenge to solve the questions: [what], [how] and [why] high performance on 2D materials

Graphene/graphite edges

 A. G. Güell et al., ACS Nano 9 3558 (2015).
I. Heller et al., J. Am. Chem. Soc. 128 7353 (2006).
C. M.A. Brett and A. M. O. Brett, Electrochemistry, Oxford Univ. Press (1993).

Cleaved kish graphite

Electrochemical

Topography

Surface structure : edge (number of layers)

bilayer : -1.5 pA

c.f. monolayer : 0.33 nm

4 layers : -2.3 pA

multi-layer : -166 pA (Thin film graphite)

Edge activity has correlated to a number of graphene layers

Detection of Bilayer Graphene Structure from Electrochemical Imaging

Measured area Electrochemical -0.53 Measured area -0.53Activity bilayer -9.49 $6 \times 6 \ \mu m$ (pA)

Other 2D Materials:

2H

D

20 nm

Typical characterization (STM)

- UH vacuum <2 x 10⁻¹⁰ Torr
- Low temp. *T*= 4-6 K

2H-NbSe₂

graphene

STM: Scanning tunneling microscopy

Other 2D Materials:

-7.76

(pA)

Easy to investigate

-11.1

(pA)

Hydrogen Evolution / Oxygen Reduction Reaction

(i)bare Au (ii)BN on Au (iii)bare glassy carbon (GC) (iv)BN on GC

 SnS_2

low cost, rare metal free, good for HER electrode

30

Collaboration with Prof. K. Uosaki in NIMS

Other reactions:

Carbon nanotubes detection: semiconducting or metallic

Semiconducting

Metallic SWNTs

 $V_{\text{appl.}} = -400 \text{ mV} \text{ (vs Ag/AgCl)}$

SWNT bundles SWNT bundles High -100 3 µm 15 pA Low

 $V_{\text{appl.}} = -600 \text{ mV} \text{ (vs Ag/AgCl)}$

Conclusion

Visualization of Electrochemical Activities

Our self-developed SECCM system can visualize

a variety of **electrochemical reaction**

(ion transport, mediator redox, electrocatalytic, corrosion etc.)

on different electrode materials Battery electrodes 2D materials: graphene, NbSe₂, SnS₂, BN, etc

SECCM is a strong technique for investigation of electrochemical electrode performance

Acknowledgements:

Prof. Y. P. Chen (Purdue Univ. / Tohoku Univ.) Prof. T. Matsue (Tohoku Univ.)

Asso. Prof. Y. Takahashi (Kanazawa Univ.) Prof. H. Shiku (Tohoku Univ.) H. Ida, Y. Sato, M. Shimura, H. Ogawa, M. Yasunaga, C. Miura, H. Inomata, M. Tanaka, T. Watanabe, K. Ogasawara

Lithium-ion Batteries:

Prof. S. Komaba (Tokyo Univ. of Sci.), Prof. S. Hitosugi (Tokyo Inst. of Tech.) Prof. K. Kanamura, Assi. Assi. Prof. H. Munakata (Tokyo Metropolitan Univ.) **2D-Materials:**

Asso. Prof. Y. Miyata (Tokyo Metro. Univ.) Asso. Prof. K. Ueno (Saitama Univ.) **Electrochemical Microscope**

Prof. Y. Korchev (Imperial College), Prof. P. R. Unwin (Unv. of Warwick)

Financial Support:

KAKENHI, **JST-ALCA-SPRING**, JST(AMED)-SENTAN, Tohoku Univ. Assemble Grant, Iwatani foundation, Tanaka memorial foundation, Toyota Motors corp., Wako Pure Chemical corp. etc