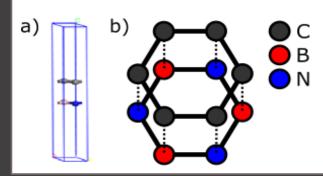
Transport Properties of Graphene on Hexagonal Boron Nitride

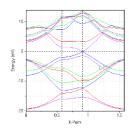
LUIS REGALADO BERMEJO

MSE 690


PROF. ALE STRAHAN

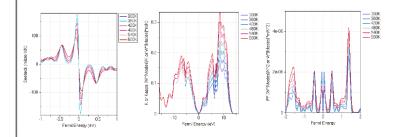
Work Flow

Step 1


Input Structure

- Atomic Structure (Fractional or Cartesian)
- Cell Vectors (Å)

Step 2 DFT Calculations (DFT MatProp)


- Band Diagrams
- Density of States
- Input Data for LanTraP

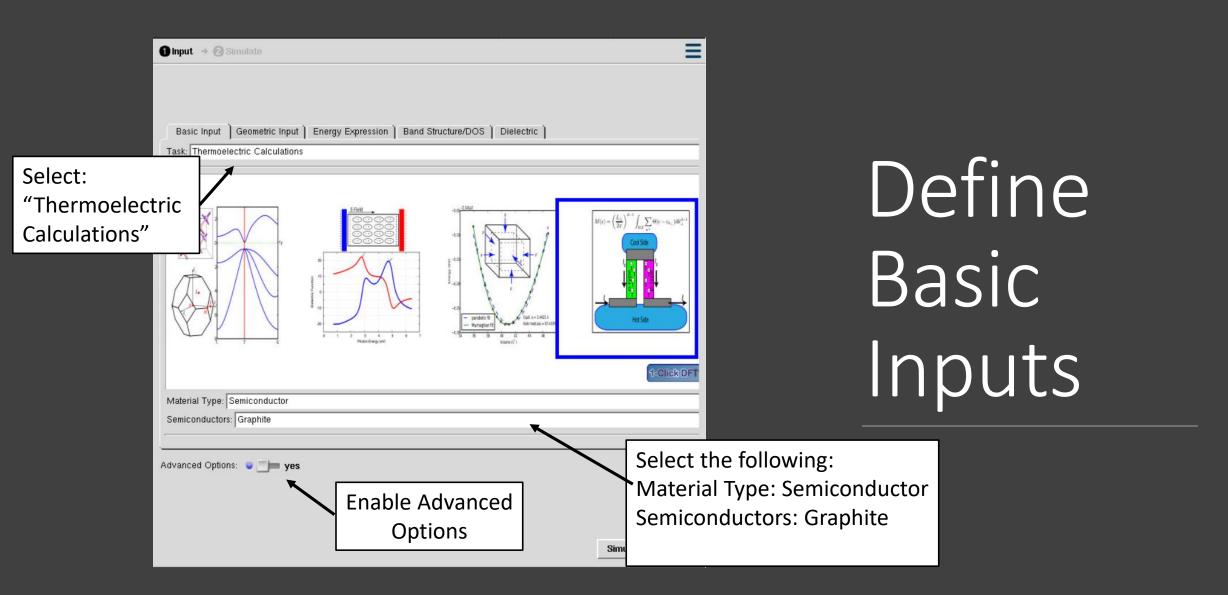
Step 3

Landauer Transport (LanTraP)

- Seebeck Coefficient (S)
- Conductivity (σ)
- Power Factor (PF)

First Part: DFT

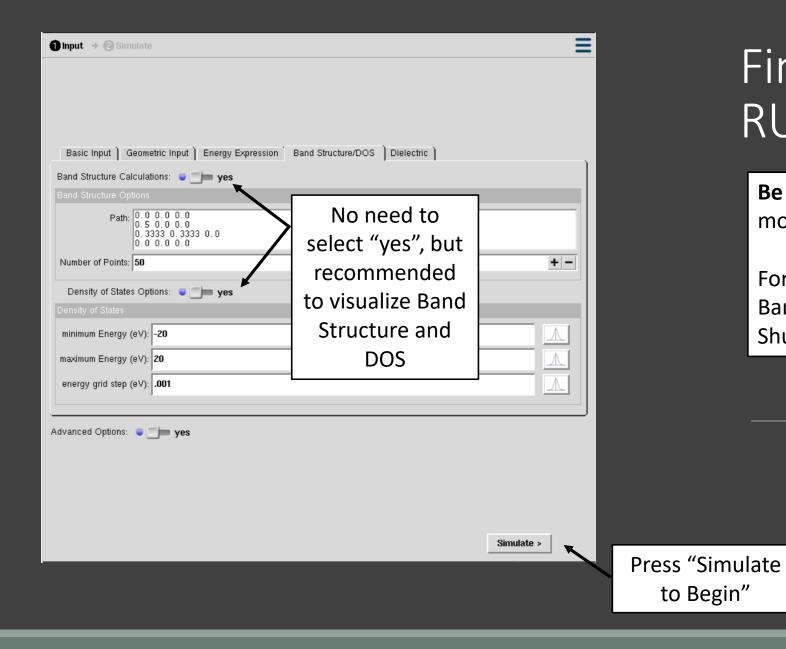
			Add Mo
	MY PROJECTS 🏾 🏶 🗙	MY SESSIONS 🏾 🏶 🗙	MYTOOLS X
	I All Projects	DFT Material Prop	Recent Favorites All Tools
	+ New Project	Search for: "DFT	Search Tools
	You have no projects at this time.		1-D Phonon BTE 🛛 💙 🗖
Dashboard		Properties	1D Drift Diffusion
2 Profile	RESOURCES × Learning Modules Teaching Materials Online Seminars Animations Workshops Downloads 	Simulator"	Model for Crystalline
🍄 Account		▶ Open	1D Finite Different 💚 🗖
Blog		Terminate	Method Conduction
Collections 1		POLLS X	WHAT'S NEW MY INTERESTS X
Contributions		How would you describe your use of nanoHUB.org?	[Add Interests] My Interests:
🕸 Courses		 I use nanoHUB.org on a regular basis 	There are no new items.
🚢 Groups		○ I have used nanoHUB.org	More new resources >
Messages		at times for specific purposes and expect to use it again	
B Points 60		○ I have used nanalili IR are	


Density Functional Theory (DFT)

Objectives:

- •Compute the band diagrams and electronic density of states for the GhBN Bilayer
- •Obtain input file to work with LanTraP

Approach:


•Perform DFT calculations using the Local Density Approximation (LDA) Row vector of n eigenvalues ε₂ ε1 ... ε₂ ε₁ ... ϵ_2 εı ··· ε, ε2 εı ε₁ ε2 ... ε₂ ε₁ εn ... ε₂ εı ... ε2 ε₁ εn ... ε₂ ε₁ ··· ε_n ε2 εı ··· ε, ε2 εı ··· ε, **ε**₂ ε1 ... ε_r ε2 εı ... εı ϵ_2 ... ε2 $\mathbf{2}_2$ εı ... 80

🕽 Input 🔸 🙆 Simulate	
Basic Input Geometric Input Energy Expression Ba	and Structure/DOS Dielectric
Exchange and Correlation functional: LDA Relax: No Number of K-Points	Select "LDA"
X direction: 30 Y direction: 30	+-
Z direction: 1 Number of K-Points (for Non-Self Consistent Field Calcection X direction: 30 Y direction: 30 Z direction: 1	Set Both Z directions to "1" +- +-
Wavefunction Kinetic Energy cutoff (Ry): 40.0 Charge Density Kinetic Energy cutoff (Ry): 160.0	
SCF Convergence Criterion (Ry): SCF maximum steps: 100 Enable occupation options: • • • • • • • •	Set to "1E-5"
Occupations Options	
Occupation: smearing Smearing: Gaussian Gaussian Spreading (Ry): .0038	
	Simulate >

Energy Expression

Final Step and RUN

Be Warned: Simulation may take more than 30 Mins.

For a more in-Depth tutorial into Band Structure and DOS, consult Shukai Yao's presentation.

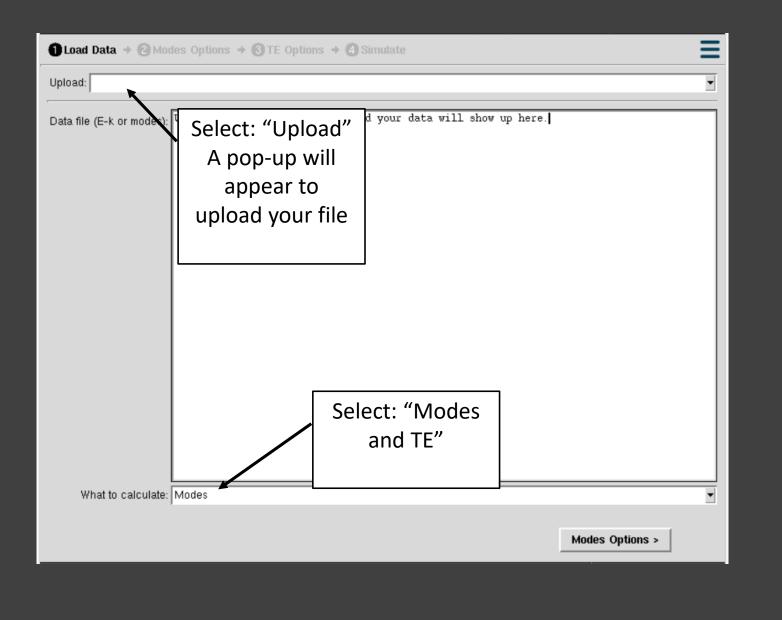
🚯 Input 🔸 🙆 Simulate	=
Result: File for Thermoelectric Calculations	
-16.0701 -14.0477 -13.1417 -10.4721 -6.44 -5.6745 -2.7984 -1 -16.0761 -14.1537 8144	
-16.0932 -14.528 -16.1178 -14.5756 -16.1455 -14.7542 Select: "File for 9382 16 -2	Click here to
-16.1714 -14.8939 -16.1912 -14.9885 -16.2019 -15.0364 Thermoelectric 385 -69	
-16. 2019 -15. 0364 -16. 1912 -14. 9885 -16. 1714 -14. 8939 Calculations" 384 - 862 -	
-16.1456 -14.7541 -11.7669 -9.9066 -7.5389 -6.4781 -3.0158 - -16.1179 -14.5736 -12.2346 -10.14 -7.0961 -6.1562 -2.938 -2. -16.0932 -14.3627 -12.655 -10.3186 -6.745 -5.8996 -2.8676 -1	appear. 9907 10 33 10.4 4303 10
-16.0761 -14.1535 -12.9921 -10.4316 -6.5161 -5.7275 -2.8142 -16.0701 -14.0475 -13.142 -10.4722 -6.4398 -5.6743 -2.7981 - -16.0761 -14.1535 -12.9921 -10.4316 -6.5161 -5.7275 -2.8142	-1.9537 1.4446 3.4791 7.3568 8.6718 11.1034 1
-16.0932 -14.3627 -12.655 -10.3186 -6.745 -5.8996 -2.8676 -1 -16.1179 -14.5736 -12.2346 -10.14 -7.0961 -6.1562 -2.938 -2 -16.1456 -14.7541 -11.7669 -9.9066 -7.5389 -6.4781 -3.0158 -	.0431 1.857 3.7924 8.3615 9.2148 10.1783 10.4
-16.1714 -14.8939 -11.2761 -9.6411 -8.0313 -6.8246 -3.0862 - -16.1912 -14.9885 -10.7985 -9.3853 -8.5179 -7.1377 -3.1384 -	
Find:	Select All
4 results	Clear One Clear All
Simulation = #3	
All	
task = lantrap SCF Convergence Criterion (Ry) = 1E-5 Band Structure Calculations = ves	
Density of States Options = yes minimum Energy (eV) = -20	
energy grid step (eV) = .001 Atomic Structure: = C 0.333330044 0.666670085 0.5800000	19 C 0.666670034 0.333330023 0.580000C
< Input	

Obtaining Input File

	399 -7.0963 -6.1564 -2.9382 -2.0433 1.8573 3.7927 8.3615 9.2149 10.1782 66 -7.5391 -6.4783 -3.016 -2.0947 2.1089 3.9877 9.0407 9.3408 9.9907 10. -8.0315 -6.8248 -3.0863 -2.1411 2.357 4.1834 9.2344 9.7888 9.9039 10.05 52 -8	۲
	59 -8 59 -8 53 -8 11 -8 66 -7 4 4 -7 86 -6 Save As Print 22 - 0	l
Save File on your Computer	316 46 -7 47 -7 11 -8 53 -8	I
	lions	I
	 -16.0701 -14.0477 -13.1417 -10.4721 -6.44 -5.6745 -2.7984 -1.954 1.445 3.4795 7.3569 8.6719 11.1034 11.3387 11.5623 11.6832 -16.0761 -14.1537 -12.9918 -10.4316 -6.5163 -5.7277 -2.8144 -1 9619 1.4968 3.5184 7.4755 8.7514 10.7817 11 1403 11 4279 	~

LanTraP

Objectives:

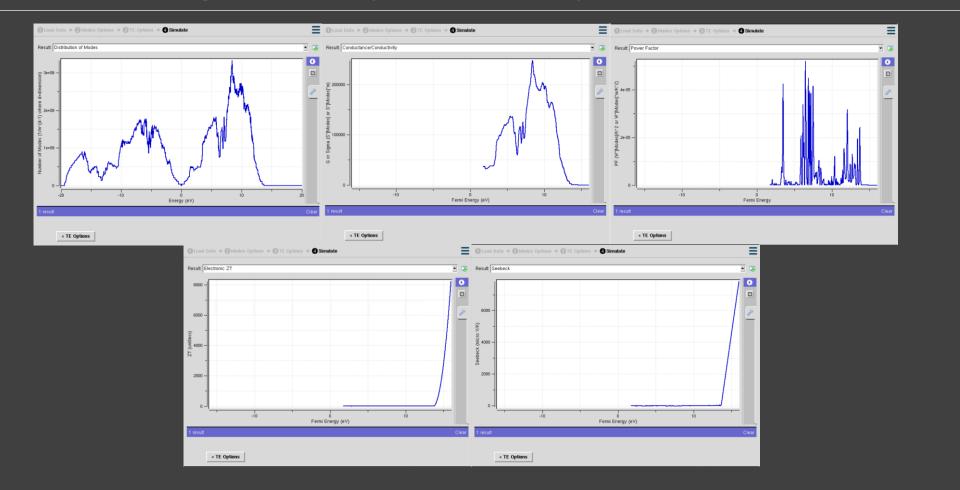

•Determine the Transport Properties of G-hBN bilayer.

- Seebeck Coefficient (S)
- Conductivity (σ)
- Power Factor (PF)

Second Part: LanTraP

							Add Modu
	MY PROJECTS 🌣	×	MY SESSIONS	٠	×	MYTOOLS	×
	🔳 All Projects		DFT Material Pro	op 🗸	•	Recent Favorites Al	Il Tools
	+ New Project	٢	Coorob for			Search Tools	
	You have no projects at thi	is	Search for: "LanTraP"	0		1-D Chain Dispersion	
Dashboard	time.	-			1-D Phonon BTE 🛛 🤎 Solver	•	
Profile	RESOURCES ×		LAST ACCESSED: December 04, 2018 @ 8:48pm	1	1D Drift Diffusion 💚 🗖 Model for Crystalline Solar Cells		
🏘 Account							
Blog	 Learning Modules Teaching Materials Online Seminars Animations Workshops 	S Terminate		1D Finite Different 🤎 Method Conduction			
Collections 1		POLLS		×	WHAT'S NEW MY INTERE	sts ×	
Contributions		How would you descr use of nanoHUB.org?	ribe your	^	[Add Interests] My Inte	erests:	
🞓 Courses	• Downloads		○ I use nanoHUB.o	org on a There are no	There are no new item	new items.	
🎩 Groups			regular basis	HUB.org		More new resources >	
Messages			at times for specific and expect to use it	purpose	5.6		
Points 60			C. Universide and	UH IR oc	~		

Upload Input File


(\mathbf{x}) nanoHUB Upload Use this form to upload data for LanTraP. If you don't specify a file for a particular input, that input won't be modified by the Upload operation. Data file (E-k or modes): Upload a file O Copy/paste text Browse... Browse for Upload your DFT file and Upload

O Load Data → 2 Modes	s Options + ③ TE Options + ④ Simulate	≡
Allow Mode Options		
Monkhorst-Pack k-grid?:	🖷 📄 yes	
Dimensionality: 2	2	•
L× (nm): 1	1	
Ly (nm): 1	1	
Lz (nm): 1	1	
Number of kx points: 3	30 + ·	-
Number of ky points: 3	30 + ·	-
Number of kz points: 1	1 + ·	-
Number of Bands: 1	16 + ·	-
Transport direction:	X	•
Spin Degeneracy: 1	1	•
Emin (eV):	-20eV	
dE (e∀): 0		
Emax (eV): 2	20eV	
	Set values as shown on	
	the picture.	
< Load Data	TE Options >	

Modes Options

● Load Data → ② Modes Options → ③ TE Options → ④ Simulat		
ТЕ		
Particle: Electron	<u> </u>	
Temperature (K): 🛑 300K		
Transport type: Ballistic		
Electron Options		
Ef min (eV): -16eV Set values to		
denta Ef (ev): 0.001ev		
Ef Max (eV): 16eV ±16eV		
Make sure		TE
values are		
always lower		
than Emin/Emax		Ontionc
From Modes		Options
Options		
	2 1 1	
< Modes Options	Simulate >	
		Press "Simulate
		to Begin"

Visualizing Transport Properties

Further Work

•Study the effects of Interplanar Distance, Temperature, and layer stacking to the transport properties of materials.

•Study other 2D materials.

•Study Phonon ballistic transport