Design, Fabrication, and Mechanical Characterization of 3D Hollow Ceramic Nano-Architectures

Dongchan Jang Korea Advanced Institute of Science and Technology (KAIST)

Sept 19th 2018 Department of Mechanical Science and Engineering Manufacturing Interest Group Seminar

Design and Fabrication of Deformable Ceramic

Dongchan Jang Korea Advanced Institute of Science and Technology (KAIST)

Sept 19th 2018 Department of Mechanical Science and Engineering Manufacturing Interest Group Seminar

What is the Most Long-Lasting Engineering Issue of Human Beings Since Stone Age?

Overcoming Brittle Failure in Ceramics

The Most Long-lasting Engineering Issue of Human-being

Overcoming Brittle Failure in Ceramics

https://ko.wikipedia.org/wiki/빗살무늬토기_시대 https://www.museum.go.kr/site/main/relic/search/view?relicId=4337#

College of Engineering Department of Nuclear and

Quantum Engineering

Strong and deformable lightweight pristine ceramics: Is it possible to make by any chance?

YES !!

College of Engineering Department of Nuclear and

Quantum Engineering

Overcoming Brittle Failure in Ceramics

Scientific Backgrounds Size Effects in Mechanical Properties

Size Effects

Coupling of Extrinsic Dimensions and Materials' Behavior Typically at Micron- and Nano-Scale

Origin of Size Effects Confinement Surface

Origin of Size Effects

Confinement: Plasticity in Single Crystals

- Mechanism: dislocation multiplication by Frank-Read source
 - characteristic length: L
 - geometric size parameter: sample parameter, D

 $R = \alpha G b / \tau$

slip plane

College of Engineering Department of Nuclear and Quantum Engineering

https://en.wikipedia.org/wiki/Frank-Read_source

Origin of Size Effects

Confinement: Weibull Statistics

Weibull statistics

Small specimen: low sampling number
Large specimen: high sampling number

$$\frac{\sigma_{\text{small}}}{\sigma_{\text{large}}} = \left(\frac{V_{\text{large}}}{V_{\text{small}}}\right)^{\frac{1}{m}}$$

crack size

College of Engineering Department of Nuclear and Quantum Engineering

normalized frequency

Origin of Size Effects

Confinement: Weibull Statistics

College of Engineering

College of Engineering Department of Nuclear and

Origin of Size Effects Confinement Surface

Buffat, P. & Borel, J.-P. Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287–2298 (1976).

Origin of Size Effects

Volume- vs Area-Dependent Properties: Griffith Criterion

Origin of Size Effects

Size Effects

Volume- vs Area-Dependent Properties: Griffith Criterion

Seemingly Contradicted How can we render small-only properties to be attainable at larger scales?

Jang, D., Meza, L. R., Greer, F., & Greer, J. R. (2013). Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nature materials.

KAIST

melocutions linking an average and

Design Factors to Consider: **1. Integration of Scaling Laws**

Scaling Law for Porous Materials

 $\sigma_{\rm y} = \sigma_o \left(\tilde{\rho}\right)^m$

 σ_y :Strength of structure σ_o :Strength of base material m:Geometric factor $\tilde{\rho}$:Relative density

Combination of Two Scaling Laws

$$\sigma_{\text{porous}} = \sigma_{\text{solid}} \left(\tilde{\rho} \right)^{m}$$

$$\sigma_{\text{porous}} = \sigma_{\text{bulk}} \left(\frac{D}{D_{\text{bulk}}} \right)^{-n}$$

$$\sigma_{\text{solid}} = \sigma_{\text{bulk}} \left(\frac{D}{D_{\text{bulk}}} \right)^{-n}$$

$$\tilde{\sigma}_{\text{porous}} = \sigma_{\text{bulk}} \left(\tilde{\rho}_{e} \right)^{m}$$

$$\tilde{\rho}_{e} = \tilde{\rho} \left(\frac{D_{\text{bulk}}}{D} \right)^{\frac{n}{m}}$$

The nano-architectures behave as if they have higher relative densities.

MELANDAR LANCE AL ALARAMANAL

Design Factors to Consider: 2. Selection of Base Material

Size-dependent Fracture Strengths of Ceramics:

Linear Elastic Fracture Mechanics

 $\rightarrow t$

 $\bullet t_{\gamma}$

College of Engineering

melaculiant lancer al muserment of

Design Factors to Consider: 3. Determination of Architectures & Dimensions

Geometric Conditions for Buckling Instabilities

Fabrication - Octahedral Unit Cell

• Euler buckling:
$$\sigma_{EB} = \frac{\pi^2 E}{2k^2} \left(\frac{R_m}{L}\right)$$

2

L

• Shell buckling: $\sigma_{SB} = \frac{E}{\sqrt{3(1-\nu^2)}} \frac{t}{R}$

Geometric Conditions for Buckling Suppression

1. **Smaller** *t* is preferred for amplification of properties.

- 2. Buckling stresses should be higher than fracture strength.
 - I. **Smaller** *R* is preferred to suppress shell buckling.
 - II. Smaller L is preferred to suppress Euler buckling.

Geometric Conditions for Buckling Suppression

Geometric Conditions for Buckling Suppression

× t = 15 nm, R = 375 nm, and L = 2500 nm

Undeformed unit cell

compressive strain = 0.015

compressive strain = 0.030

melaculiant lancer al muserment of

Design Factors to Consider: 4. Existence of Scalable Fabrication Technique

Fabrication Overview

Solid polymer frame

Hollow ceramic

Ceramic-coated polymer frame

College of Engineering

Specimen Fabrication Process

Specimen Fabrication Process

ALD (Atomic layer deposition)

- Al₂O₃ deposition (15 55 nm)
- TMA + H₂O precursors

Furnace

- Burning out polymer frame
- 350°C for 5hr, 500°C for 2 hr

College of Engineering

melocutions leaves allowermonth as

Mechanical Characterizations

Mechanical Characterization of Ceramic Nano-Architectures

Pillar-shaped samples fabrication by Focused Ion Beam (FIB)

- 5 micron diameter
- 8 micron height

ALD cycles	Thickness	Density	Relative Density
75	15 nm	105 ± 6.59 kg/m ³	0.036
100	20 nm	123 ± 1.50 kg/m ³	0.042
130	25 nm	172 ± 7.41 kg/m ³	0.059
160	30 nm	228 ± 19.6 kg/m ³	0.079
220	40 nm	287 ± 14.4 kg/m ³	0.099
300	50 nm	377 ± 6.10 kg/m ³	0.130
350	55 nm	451 ± 14.7 kg/m ³	0.155

ACTALLAND LANCA ALCOLOGACIES

t = 55 nm

0.1

0.3

0.4

0.5

0.15

t = 15 nm

Mechanical Characterization of Ceramic Nano-Architectures

Mechanical Characterization of Ceramic Nano-Architectures

Thickness	Strength	
15 nm	25.7 ± 3.7 MPa	
20 nm	32.7 ± 2.5 MPa	
25 nm	45.1 ± 6.4 MPa	
30 nm	48.6 ± 3.9 MPa	
40 nm	65.9 ± 8.2 MPa	
50 nm	90.3 ± 5.2 MPa	
55 nm	110.9 ± 9.9 MPa	

Mechanical Characterization of Ceramic Nano-Architectures

Overcoming Conventional Scaling Law Limit

Size-dependent Fracture Strengths of Base Material Based on Griffith Theory

melanariana lancara all'aviananali en

How much can we improve further?

Design Factors

1. Integration of Scaling Laws
2. Selection of Base Material
3. Determination of Architectures & Dimensions
4. Existence of Scalable Fabrication Technique

Things to Improve: **1.Base Materials**

Things to Improve: 2. Architectural Scaling Law

Bending- vs. Stretching-dominated Architectures

Fig. 1. (a) A mechanism; (b) a structure.

Fig. 4. Three-dimensional polyhedral cells that do, or do not, satisfy the Maxwell criterion.

Deshpande VS, Ashby MF, Fleck NA. Foam topology: bending versus stretching dominated architectures. Acta Mater. 2001;49(6):1035-1040.

$$\sigma_{\mathrm{y,nano}} \propto \left(\tilde{\rho}\right)^{m-\frac{1}{2}} = \left(\tilde{\rho}\right)^{\frac{1}{2}}$$

Things to Improve: **3. Materials Scaling Law**

Intrinsic Toughening Mechanisms at Nanoscale

Summary

- Using nanomechanical principles, it is possible
 - to simultaneously impart high strength and flexibility to ceramic materials
 - to overcome the limit of conventional scaling law in porous ceramics.
- This is just a beginning. There are a lot more things to do

Thanks for your attention !

College of Engineering Department of Nuclear and

Quantum Engineering