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What is the Most Long-Lasting Engineering
Issue of Human Beings Since Stone Age?

Overcoming Brittle Failure in Ceramics
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The Most Long-lasting Engineering Issue of Human-being

Overcoming Brittle Failure in Ceramics

= Various Patterns of Pottery
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Strong and deformable lightweight pristine
ceramics: Is it possible to make by any
chance?

YES !
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Overcoming Brittle Failure in Ceramics
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Size Effects

Scientific Backgrounds

Size Effects in Mechanical Properties
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Size Effects

Size Effects

Coupling of Extrinsic Dimensions and Materials’
Behavior Typically at Micron- and Nano-Scale
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Size Effects

Origin of Size Effects

Confinement
Surface
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Size Effects

Origin of Size Effects

Confinement
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Size Effects

Origin of Size Effects

D Confinement: Plasticity in Single Crystals

« Mechanism: dislocation multiplication by Frank-Read source

7 - characteristic length: L
- geometric size parameter: sample parameter, D
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Size Effects

Origin of Size Effects

Confinement: Weibull Statistics

A
Welbull statistics
~ » Small specimen: low sampling number
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Size Effects

Origin of Size Effects

Confinement: Weibull Statistics

PDF as a function of
individual flaw size
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Size Effects

Origin of Size Effects

Confinement: Weibull Statistics

Flaw Size
> Decreasing sample
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-
() R<nH<nh
=
O
()
-
LL
=
a
—n
> 1’2 5 > P -
"3 plate thickness, ¢ ) . >

I(AI ST College of Engineering

Department of Nuclear and
Quantum Engineering




Size Effects

Origin of Size Effects

Confinement
Surface
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Size Effects

Origin of Size Effects

Surface
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Size Effects

Origin of Size Effects

Volume- vs Area-Dependent Properties
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Size Effects

Origin of Size Effects

Volume- vs Area-Dependent Properties: Griffith Criterion

Criterion for crack propagation at
constant displacement condition
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Size Effects

Origin of Size Effects

Volume- vs Area-Dependent Properties: Griffith Criterion
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Size Effects

Seemingly Contradicted

How can we render small-only properties to be
attainable at larger scales?
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Ceramics Nano-architectures

Natural Materials
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Jang, D., Meza, L. R., Greer, F, & Greer, J. R. (2013). Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nature materials.
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Ceramics Nano-architectures

Design Factors to Consider:
1. Integration of Scaling Laws
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Ceramics Nano-architectures

Scaling Law for Porous Materials

material of which
foam is made
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Ceramics Nano-architectures

Scaling Law for Base Materials
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Ceramics Nano-architectures

Combination of Two Scaling Laws
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The nano-architectures behave as if they have higher relative
densities.
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Ceramics Nano-architectures

Design Factors to Consider:
2. Selection of Base Material
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Ceramics Nano-architectures

Size-dependent Fracture Strengths of Ceramics:

Linear Elastic Fracture Mechanics
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Ceramics Nano-architectures

Design Factors to Consider:
3. Determination of Architectures &
Dimensions
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Ceramics Nano-architectures

Geometric Conditions for Buckling Instabilities

Fabrication - Octahedral Unit Cell

Pt deposition

TiN Layer

Substrate

2 2
- Euler buckling: opp = ! (Rm>

. Shell buckling: B L °

3(1-v2) R

C.X.
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Ceramics Nano-architectures

Geometric Conditions for Buckling Suppression

3(1—1/2)R B = 92

E t 2E (R’
0SB = = i
=3

C.X.

1. Smaller ¢ is preferred for amplification of properties.

2. Buckling stresses should be higher than fracture strength.
|. Smaller R is preferred to suppress shell buckling.

ll. Smaller L is preferred to suppress Euler buckling.
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Ceramics Nano-architectures

Geometric Conditions for Buckling Suppression
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Ceramics Nano-architectures

Length/Radius

Radius/Thickness
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Geometric Conditions for Buckling Suppression
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Ceramics Nano-architectures

Design Factors to Consider:

4. Existence of Scalable Fabrication
Technique
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Ceramics Nano-architectures

Fabrication Overview

Solid polymer frame
Hollow ceramic

t:15-55 nm

—

L:1.2 um R: 150 nm
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Ceramics Nano-architectures

Specimen Fabrication Process
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Ceramics Nano-architectures

Specimen Fabrication Process

ALD (Atomic layer deposition)

- Al2O3 deposition (15 - 55 nm)
- TMA + H20 precursors

)

‘ﬁ_ ‘} r,;\rd“ 0.. "~~\ N |
ALLASERE QL) 5 ML .i - Burning out polymer frame
Q_‘ ’7""“ ﬂ'jf - 350°C for 5hr, 500°C for 2 hr
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Ceramics Nano-architectures

Mechanical Characterizations
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Ceramics Nano-architectures

Mechanical Characterization of Ceramic Nano-Architectures

Pillar-shaped samples fabrication by Focused lon Beam (FIB)

* 5 micron diameter
* 8 micron height

ALD cycles Thickness Density Relative Density
75 15 nm 105 + 6.59 kg/m3 0.036
100 20 nm 123 + 1.50 kg/m3 0.042
130 25 nm 172 +7.41 kg/m3 0.059
160 30 nm 228 + 19.6 kg/m3 0.079
220 40 nm 287 +14.4 kg/m3 0.099
300 50 nm 377 +6.10 kg/m3 0.130
350 55 nm 451 £ 14.7 kg/m3 0.155
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Ceramics Nano-architectures

t=55 nm
140 .

120+

—_
o
o
T
L

t=55nm

80

60

Stress(MPa)

40+

20

0 0.05 0.1 0.15
Strain

t=15nm

o
o
T

~
o
T

[=2]
o
T

[oa)
o
T

t=15nm

Stress(MPa)
S
=

w
o
T

0 : : : o
0 0.1 0.2 03 04 05

Strain

I(AI ST College of Engineering

Department of Nuclear and
Quantum Engineering

PG AR N IS AR IR AN




Ceramics Nano-architectures

Mechanical Characterization of Ceramic Nano-Architectures
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Ceramics Nano-architectures

Mechanical Characterization of Ceramic Nano-Architectures

Thickness Strength
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Ceramics Nano-architectures

Mechanical Characterization of Ceramic Nano-Architectures

Wall Thickness
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Ceramics Nano-architectures

10000+
; Important breakthroughs
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Ceramics Nano-architectures

Overcoming Conventional Scaling Law Limit
Size-dependent Fracture Strengths of Base Material Based on Griffith Theory
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Ceramics Nano-architectures

10000+

D19
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Further Worles

How much can we improve further?
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Further Worles

Design Factors

1.Integration of Scaling Laws
2.Selection of Base Material
3.Determination of Architectures & Dimensions

4.Existence of Scalable Fabrication Technique
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Further Worlkes

Things to Improve:
1.Base Materials
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Further Worles
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Further Worles

Things to Improve:
2. Architectural Scaling Law

eeeeeeeeeeeeeeeeeeeeee




Further Worles

Bending- vs. Stretching-dominated Architectures

. - —
| | / /\-J

Q\ joint /Q 6% {ﬁ

a3 3 S S

v
(a) (b) 6. NO 7.NO 8. NO 9. YES
Fig. 1. (a) A mechanism; (b) a structure. Fig. 4. Three-dimensional polyhedral cells that do, or do not, satisfy the Maxwell criterion.

Deshpande VS, Ashby MF, Fleck NA. Foam topology: bending versus stretching dominated architectures. Acta Mater. 2001;49(6):1035-1040.
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Further Works
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Further Worles

Things to Improve:
3. Materials Scaling Law
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Further Worlkes

Intrinsic Toughening Mechanisms at Nanoscale
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Further Works
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Further Works

10000-

Ceramics

Metals
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Sum mary

Summary

- Using nanomechanical principles, it is possible

- to simultaneously impart high strength and flexibility to ceramic
materials

- to overcome the limit of conventional scaling law in porous
ceramics.

* This is just a beginning. There are a lot more things to do
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Sum mary

Thanks for your attention |
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