Superfluids of Light: Bose-Einstein Condensation of Polaritons

David Snoke University of Pittsburgh Burcu Ozden Shouvik Mukherjee David Myers Jonathan Beaumarriage

Experimental Collaborators: L. Pfeiffer, K. West, Princeton K. Nelson, Y. Sun, Y. Yoon, MIT

Theory collaborators: Allan MacDonald, Xie Ming, U.Texas Andrew Daley, Rosaria Lena, U. Strathclyde

Supported by the Army Research Office Project W911NF-15-1-0466

Outline

- 1. Review of Bose-Einstein condensation
- 2. What is a polariton?
- 3. Review of results with short-lifetime polaritons
- 4. New results with long-lifetime polaritons

1. Review of Bose-Einstein Condensation

entire universe

	fermions	bosons
spin	1/2, 3/2,	0, 1, 2,
transition rate	$\Gamma_{i ightarrow f} \propto 1-N_{f}$ (Pauli exclusion)	$\Gamma_{i \rightarrow f} \propto 1 + N_f$ (Stimulated transitions)
examples	electrons, protons	photons, phonons

detailed balance in equilibrium

forward scattering rate: $\langle M \rangle^2 N_1 N_2 (1 \pm N_3) (1 \pm N_4)$ reverse scattering rate: $\langle M \rangle^2 N_3 N_4 (1 \pm N_1) (1 \pm N_2)$

balance: $N_1N_2(1\pm N_3)(1\pm N_4) = N_3N_4(1\pm N_1)(1\pm N_2)$

only solution for N(E) is

$$N(E) = \frac{1}{e^{\beta E + \alpha} \mp 1}$$

$$N(E) = \frac{1}{e^{(E-\mu)/kT} \mp 1}$$
 + "Fermi-Dirac"
- "Bose-Einstein"

Fermi-Dirac

Bose-Einstein

$$N_k = \frac{1}{e^{(E_k - \mu)/k_B T} - 1}$$

approaches $e^{-E/kT}$ when $\mu \ll E_0$

Ideal equilibrium Bose-Einstein distribution

what happens when $\mu = E_0$?

Macroscopic occupation of ground state!

collection of particles act as a single wave = "coherent state"

Not unusual for "driven" boson systems e.g. coherent EM wave (radio) or coherent sound wave (loudspeaker)

but here occurs by spontaneous symmetry breaking.

Imagine that we can do the following

Start with photons, which are good bosons, and give them

a) mass

b) interactions

c) number conservation, with only weak decay within their thermalization time

Their behavior will obey the same equations as atomic condensates, with a few alterations:

1) terms for weak generation and decay

2) direct measurement of wave function amplitude in light which leaks out of the system

2. What is a polariton?

Start with a set of two-level quantum oscillators:

excitation is mobile: an "exciton"

2. What is a polariton?

Two excitations:

hard-core repulsion of excitons

Polaritons in a Cavity

mix photon states with a two-level excitation (exciton)

cavity photon:

$$E = \hbar c \sqrt{k_z^2 + k_{\parallel}^2} = \hbar c \sqrt{(\pi/L)k_z^2 + k_{\parallel}^2}$$

quantum well exciton:

$$E = E_{gap} - \Delta_{bind} + \frac{h^2 N^2}{2m_r (2L)^2} + \frac{h^2 k_{\parallel}^2}{2m} \approx \text{const. near } k_{\parallel} = 0$$

Tune $E_{ex}(0)$ to equal $E_{phot}(0)$:

Mixing leads to "upper polariton" (UP) and "lower polariton" (LP)

LP effective mass ~
$$10^{-4} m_e$$

By mixing with exciton states, we have an *interacting*, light-mass boson gas.

General condition for quantum effects to be important:

$$r \sim \lambda_{dB}$$

$$n^{-1/d} \sim h / \sqrt{mk_B T}$$

$$T \sim \frac{h^2 n^{2/d}}{m}$$

- \Rightarrow superfluid at *low T* or *high density*
- $\Rightarrow light mass means high T_c$ (typical T ~ 10-20 K, room temperature possible)

Methods of Controlling the Potential Energy Felt by Microcavity Polaritons

Two general approaches:

1) shift exciton level

- shift bare exciton energy using stress
- shift exciton energy by mean-field potential of exciton cloud
- shift exciton energy by AC Stark effect

2) shift photon level

- change cavity width
- change cavity Q

Using Stress to Shift Exciton Energy:

Bending free-standing sample gives hydrostatic expansion:

finite-element analysis of stress

bare excitons in a single quantum well

Photon energy shift by cavity wedge:

crossing of photon and exciton energies gives "photonic" and "excitonic" sides for lower polariton

"Exciton cloud" potential

• excitons are 10⁴ more massive than the polaritons. They move very little, so that collisions of polaritons with excitons are nearly elastic– a static barrier as seen by polaritons

position and height controlled directly by laser

 disadvantage: polaritons are created at the same place by conversion of polaritons into excitons. Potential energy cannot be tuned independently of polariton density

Control of polariton flow by laser-generated barriers

Christmann, Savvidis, and Baumberg, 2015

3. Review of results with short-lifetime polaritons $(\tau \sim 5 \text{ ps})$

Recall: Critical threshold for quantum coherence

$$r \sim \lambda_{dB}$$

 $n^{-1/d} \sim h / \sqrt{mk_B T}$

\Rightarrow superfluid at *low T* or *high density*

trap implies *spatial* condensation

Spatial profiles of polaritons in a harmonic potential trap

Angle-resolved photon emission data give momentum distribution

We can therefore image the gas in both real space and momentum space as data.

Momentum-resolved luminescence spectra: short lifetime (cavity lifetime ~ 1 ps, average lifetime ~ 10 ps)

R. Balili et al., Science **316**, 1007 (2007)

"Bimodal" momentum distribution of polaritons

2006-2007 data actually a *nonequilibrium* condensate— Peaking due to Bose statistics, but excited states not in equilibrium.

Kinetic simulations of polariton equilibration

Tassone, et al , Phys Rev B 56, 7554 (1997).
Tassone and Yamamoto, Phys Rev B 59, 10830 (1999).
Porras et al., Phys. Rev. B 66, 085304 (2002).
Haug et al., Phys Rev B 72, 085301 (2005).

Sarchi and Savona, Solid State Comm 144, 371 (2007).

$$\frac{d\langle \hat{N}_k \rangle}{dt} = \frac{2\pi}{\hbar} \left(\frac{V}{(2\pi)^3} \right)^2 \frac{1}{2} \int d^3k_1 \, d^3k_2 \, |U_D \pm U_E|^2 \delta(E_{k_1} + E_{k_2} - E_k - E_{k'}) \\ \times \left[\langle \hat{N}_{k_1} \rangle \langle \hat{N}_{k_2} \rangle (1 \pm \langle \hat{N}_k \rangle) (1 \pm \langle \hat{N}_{k'} \rangle) - \langle \hat{N}_k \rangle \langle \hat{N}_{k'} \rangle (1 \pm \langle \hat{N}_{k_1} \rangle) (1 \pm \langle \hat{N}_{k_2} \rangle) \right]$$

Numerical steady-state solution for occupation number

are essentially

V. Hartwell, Ph.D. thesis (2008); PRB 82, 075307 (2010)

4. New results with long-lifetime polaritons $(\tau \sim 300 \text{ ps})$

Super sample: Q > 300,000 cf. previous samples with Q~5000

Done by using DBR mirrors with 40 layers

MBE growth by Pfeiffer growth > 30 hours per sample. growth rate must remain stable during this time (±1%) disorder must remain low (±1 monolayer typical)

cavity lifetime scales with Q: from ~2 ps to over 200 ps

polariton lifetime is longer: decay rate is proportional to photon fraction

Recall generalized Snell's law: In-plane momentum must match between polariton and external photon.

We can therefore image the gas in both real space and momentum space as data.

We can also *inject* polaritons with a specific momentum.

angle of injection gives in-plane p

Direct resonant injection:

M. Steger et al., Optica **2**, 1 (2015)

The quality of our samples is shown by these measurements: > 200 ps lifetime, > 2 mm transport

Time-resolved polariton motion in a potential gradient

Equilibrium distributions of polaritons in laser trap in long lifetime samples

overall height is <u>not</u> a free parameter: fixed by μ .

$$N(E) = \frac{1}{e^{(E-\mu)/kT} - 1}$$

Spectral width drops sharply at BEC transition (spontaneous coherence)

Maxwell-Boltzmann at low density $Ae^{-E/k}B^{T}$

Y. Sun, et al., PRL 118, 016602 (2017).

Making a ring trap focused ase, daside

Making a ring trap

focused laser, in center

2D spatial image

ablowe threshold

spectral narrowing in ring:

below threshold

above threshold

Energy spectrum of ring condensate

Michelson interferometer with flip of x-axis

Interference patterns- fork in interference shows vorticity

This is a persistent circulating current. Coherence time > 25 µs

phase winding

45%

45%

phase maps extracted from fringe patterns

Standard vortex in quantum fluids

If a system can be described by a macroscopic wave function, for example a condensate,

$$\psi(\vec{r}) = \sqrt{\rho(\vec{r})} e^{i\theta(\vec{r})}$$

then the velocity field at a point where the particle density is nonzero is given by

$$\vec{v}(\vec{r}) = \frac{\hbar}{m} \nabla \theta(\vec{r})$$

Vortex: for a single-valued (coherent) wave function, the phase shift around the path is quantized,

$$\oint_C \vec{v}(\vec{r}) \cdot d\vec{r} = n \frac{h}{m}, \quad n = 0, \pm 1, \pm 2 \cdots$$

$$\oint_C \nabla \theta(\vec{r}) \cdot d\vec{r} = n \cdot 2\pi$$

implies flux quantization in superconductors

C: closed path

$$\psi(\vec{r})$$

Half vortex of polariton condensate

In a spinor fluid, the wave function has two components; for example, two spin components in the *xy* plane,

$$\psi(\vec{r}) = \{\psi_x(\vec{r}), \psi_y(\vec{r})\} = \sqrt{\rho(\vec{r})} e^{i\theta(\vec{r})} \{\cos(\eta), \sin(\eta)\}$$

Exciton-polariton is a spinor fluid:

The polariton has angular momentum ± 1 projection perpendicular to the 2D plane.

Fractional vortex:

Two rotations involved: phase and spin. Two quantum numbers (k, m)

Y. Rubo, Physical Review Letters **99**, 106401 (2007) M. C. Cross and W. F. Brinkman, J. Low Temperature Physics **27**, (1976).

Polarization profile No polarizer

polarization resolved images

Wave function that reproduces our experiment result:

$n(\theta)$: particle density from experiment

Theory

Experiment

Condensate motion in etched rings

- Typical width (outer inner radius) ≈ 15 µm
- Typical Center radius = 50 µm

Time-resolved measurements with streak camera and pulsed excitation

Hamiltonian of the system is the same as a rigid pendulum.

100 µm diameter ring

Time-averaged, polarization-resolved image

Four-fold symmetry of spin orientations in condensate.

Precession of spin state can occur due to GaAs Hamiltonian which gives effective magnetic field: optical spin-Hall effect

Streak image

(wide *k*-collection)

Conclusions

• Polariton BEC is now well established, and is moving toward room temperature

• We have many ways now to control the potential static exciton cloud, static strain, acoustic waves, modulate cavity Q with surface patterning, AC Stark shift

 New long-lifetime samples allow true equilbrum of polariton gas and long-range motion

• Ring trap now possible, with quantized circulation as stable state

Visit beautiful western Pennsylvania!

 Nonathan
 Ryan

 Jonathan
 Balili

 Balili
 Balili

 Shouvik
 Estrecho

David

Myers

