Fiber Optic Communications Lecture 7

- Optical telecommunication links
- System limitations

Optical Telecommunications: Basic System Components

Optical Telecommunications: Point-to-Point Links

Beyond a certain distance, an amplifier is required to boost the intensity of light. Two types:

- Regenerators convert light to electrical signal and regenerate
- Optical amplifiers direct increase strength of input light through input of pump energy

Repeater distance: L

Optical Telecommunications: Distribution Networks

Commonly used in many-to-one contexts (such as home internet service). Two types:

Optical Telecommunications: Local Area Networks

Commonly used in many-to-many contexts (such as Purdue campus internet service). Two types:

Fiber Optic Communications Lecture 7

- Optical telecommunication links
 - System limitations

Loss and Dispersion Limit Bandwidth

E. Agrell et al., Roadmap of optical communications, J. Opt. 18 (2016).

Loss Constraints

$$L = \frac{10}{\alpha_f} \log_{10} \left(\frac{\bar{P}_{tr}}{\bar{P}_{rec}} \right)$$

Power budget
$$\bar{P}_{tr} = \bar{P}_{rec} + C_L + M_s$$

$$\bar{P}_{tr} = \bar{P}_{rec} + C_L + M_s$$

Table 5.1 Power budget of a 0.85-μm lightwave system

Quantity	Symbol	Laser	LED
Transmitter power	$ar{P}_{ m tr}$	0 dBm	-13 dBm
Receiver sensitivity	$\bar{P}_{ m rec}$	-42 dBm	-42 dBm
System margin	M_{s}	6 dB	6 dB
Available channel loss	C_L	36 dB	23 dB
Connector loss	$\alpha_{\rm con}$	2 dB	2 dB
Fiber cable loss	α_f	3.5 dB/km	3.5 dB/km
Maximum fiber length	Ĺ	9.7 km	6 km

Dispersion Constraints

General dispersion limit: $BL \leq (4|D|\sigma_{\lambda})^{-1}$,

For semiconductor lasers with a single mode, one can reach the ultimate dispersion limit

$$B^2L < (16|\beta_2|)^{-1}$$

Rise Time Budget

$$T_r^2 = T_{\rm tr}^2 + T_{\rm fiber}^2 + T_{\rm rec}^2$$

Best Recorded Ultra-Long Haul Performance

J.-X. Cai et al., Europ. Conf. Opt. Telecom. (2015).