Nanodevices and Maxwell's Demon

Electronic demon

For a detailed write-up See arXiv:condmat/0704.1623

Unified viewpoint: Materials

online simulations and more

 $1 \mu m$

Unified viewpoint: Ballistic to Diffusive

online simulations and more

0.1 nm

Atomic dimensions

Designing an energy conversion device

Need two groups of states:

"Red"

&

"Blue"

Anti-parallel (AP) Spin Valve

Perfect AP with Spin-flip Impurities

nanoHUB.org

Perfect AP with Spin-polarized gate

Current at zero voltage!!

Device as a "demon"

Where did the energy come from?

Answer: From the contacts

Second law?

$$S = 0$$

Energy upto $T\Delta S$ may be extracted

nanoHUB.org online simulations and more

Resetting the demon takes energy

Nanomagnets

The cool demon as a heat engine

 Q_1 : heat from contacts Q_2 : heat to demon $Q_1 - Q_2$: useful work

Carnot's $\frac{Q_1}{kT} < \frac{Q_2}{kT_D}$

Voltage --->

Surrent

Nanoscale Refrigerator

Carnot's principle

$$\frac{Q_1}{kT} > \frac{Q_2}{kT_D}$$

Switching a bistable demon

online simulations and more

 $P = 10^4$ electrons

 \times (40 kT) = 1 μ W / switch

 $x 10^{9} Hz$

Transport + Dynamics of Magnetization

Pentalayer spin-torque device

nanoHUB.org

Quantum Transport far from Equilibrium

online simulations and more

Materials

Transport Regimes

0.1 mm Macroscopic dimensions

10 μm <--- L --

1 μ m

 $0.1 \mu m$

10 nm

1 nm

0.1 nm

dimensions

Reference:

For a detailed write-up see arXiv:condmat/0704.1623

www.nanohub.org/courses/cqt