West Lafayette, Nous Voila

Georgia School of Electrical and Tech Computer Engineering Birck Nanotechnology Center Distinguished Lecture, Purdue University, West Lafayette, IN, Dec. 3, 2018

Organic Photonics and Electronics: The Endless Frontier

Bernard Kippelen

Atlanta: A Fast Growing Technology Hub

Kippelen Research Group

Canek Fuentes Principal Research Scientist

Xiaoqing Zhang

Yi-Chien Chang

Silja Abraham

Youngrak Park

Xiaojia Jia Wen-Fang Chou

Felipe Larrain

Victor Rodriguez

Gunhee Kim

Outline

Motivation and external drivers

- Recent advances:
 - Electrode engineering
 - Organic light-emitting diodes
 - Thin-film transistors

Global Macro Trends

Increasing **population**: 7.6 Billion today, 8.5 Billion by 2030

Increasing **energy** demand: 16 TW in 2007 (0.5 ZJ), 28 TW by 2050 (0.9 ZJ)

Population shift from rural to urban areas Aging population Increasing economic disparity

An Economy in Flux

Source: Financial Times Global 500 rankings; Based on market capitalization

Technology Trends

- Artificial Intelligence
- Internet of Things
- Cybersecurity
- Blockchain
- Quantum computing
- Immersive experience
- CRISPR:Cas9
- Smart materials

What is the Next Big Thing?

What's Next: Fourth Industrial Revolution*

An accelerated convergence

Source: www.transconflict.com

^(*) Coined by Klaus Schwab, Founder of the World Economic Forum

Georgia School of Electrical and Tech Computer Engineering

Grand Challenges and Opportunities

Improve the quality of life through <u>sustainable</u> <u>development</u>:

- **P**rofit (economics)
- **P**eople (societal)
- Planet (environment)

From "Digital" to "Deep Tech"

Katsushika Hokusai's The Great Wave off Kanagawa

[1] "From Tech to Deep Tech," Boston Consulting Group and Hello Tomorrow report.

[2] The 4th Industrial Revolution, Klaus Schwab, Crown Publishing Group 2016.

Digital innovation wave: wider dissemination enabled by hyper-connected world

Next Deep Tech wave:

disruptive solutions built around unique, protected technological or scientific advances

Organic Molecules and Polymers

Carbon-based compounds with tailored optical, electrical and mechanical properties Semiconductor films processed at room temperature from vacuum or solution.

Printed Electronics Market Forecast

Organic Semiconductors: Conjugated Molecules and Polymers

π orbital

Drawings: courtesy of Wolfram Ratzke, Lupton Group, Univ. of Regensburg

Georgia School of Electrical and Tech Computer Engineering HOMO-1

Frontier Molecular Orbitals

Organic Semiconductors: Transport Bands

Solid-state Organic Optoelectronic Devices

Electrodes for charge injection (OLED, OFET) or charge collection (OPV) are essential deviceenabling building blocks

Outline

Motivation and external drivers

- Recent advances:
 - Electrode engineering
 - Organic light-emitting diodes
 - Thin-film transistors

Simple Method to Produce Stable Low Work Function Electrodes (Electron Collection)

Y. Zhou, J. Shim, S.R. Marder, J.L. Bredas, S. Graham, A. Kahn, B. Kippelen et al. Science, 336, 327 April 20 (2012).

A Universal Method

UPS measurements: Kahn group Secondary photoelectron cutoffs

Reduction in work function up to 1.5 eV

All-organic Solar Cell

Y. Zhou, J. Shim, S.R. Marder, J.L. Bredas, S. Graham, A. Kahn, B. Kippelen et al. Science, 336, 327 April 20 (2012).

Continuous bending

0.2

0.0

All-organic Solar Cells in the News

Forbes / Tech

APR 25, 2012 @ 04:04 AM 16,404 VIEWS

New Technique Creates First Plastic Solar Cell

Jennifer Hicks CONTRIBUTOR

I write about science. robotics & innovative technologies in Europe.

FOLLOW ON FORBES (198

- 4

panels. In 2006, more than half of the world's supply of polysilicon was used for production of renewable electricity. In 2008, only twelve factories produced solar-grade polysilicon. In 2011, the industry produced an Opinions expressed by Forbes excess of polysilicon. And now, another shift – the creation of a plastic solar cell. Contributors are their own.

Georgia Tech's Bernard Kippelen and his team developed the first completely plastic solar cell. Courtesy: Virginie Drujon-Kippelen

Y. Zhou, S.R. Marder, J.L. Bredas, S. Graham, A. Kahn, B. Kippelen et al. Science, 336, 327 April 20 (2012).

Georgia School of Electrical and Tech // Computer Engineering

Electrical Doping of Organic Semiconductors

Dai, A., et al. Adv. Funct. Mater. 24, 2197-2204, (2014).

Simple Method for Electrical Doping

V.A. Kolesov et al., Nature Materials 16, 474, April 2017. Doi: 10.1038/nmat4818

Outline

Motivation and external drivers

- Recent advances:
 - Electrode engineering
 - Organic light-emitting diodes
 - Thin-film transistors

OLEDs: Light Sources of the Future

Diffuse light, UV free, large area, ultra-thin, flexible, transparent

OLED Science and Technology

Materials Device architecture

 Manufacturing technology
 Integration: packaging and bonding (interconnects with backplane, barrier coatings, functional films)

Electroluminescence for Beginners

Photophysics of Organic Molecules

Simplified electronic state diagrams for <u>planar</u> <u>all-carbon</u> conjugated compounds: neglects non-bonding orbitals and charge-transfer states

Light Emission in Organic Molecules

Thermally Activated Delayed Fluorescence

<u>All-organic compounds that do not contain precious heavy metals, an</u> alternative to phosphorescence

Design criteria based on engineering a weak coupling between donor and acceptor-like moieties.

$$\boldsymbol{k_{\text{RISC}}} = \boldsymbol{A} \exp(-\Delta \boldsymbol{E_{ST}}/k_B T)$$

Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C. *Nature*. 492, 234 (2012). Nakanotani, H., Masui, K., Nishide, J., Shibata, T., Adachi, C., *Scientific Reports*. 4, 2127 (2013).

Material Design Strategy

LUMO: oxadiazole-like

US 9,133,177 B2 issued Sep. 15, 2015

Collaboration with Bredas Group, Georgia Tech Computed at the DFT B3LYP/6-31 G** level

Georgia School of Electrical and Tech Computer Engineering

TADF: Organic Light-emitting Diodes

Kim, Kwon-Hyeon & Jang-Joo Kim, Advanced Materials (2018)

TADF Devices with Carbazole/Sulfone Host

Green-emitting TADF OLEDs

Device	Luminance (cd/m²)	Volt (V) E _{st} = 83 meV	EQE (%)	cd/A	Lm/W	mA/cm²
4CzIPN	6	3.2	26.2	79.5	78.1	0.01
	110	3.8	22.3	69.2	57.2	0.16
	965	4.8	21.1	64.2	42.0	1.50
	10365	8.2	12.3	37.4	14.3	27.7

M. Gaj, B. Kippelen et al. Org. Electron. 16, 109-112 Jan. (2015)

Blue-emitting TADF OLEDs

Device	Luminance (cd/m ²⁾	Volt (V)	EQE (%)	cd/A	Lm/W	mA/cm²
2CzPN	6	3.0	22.0	53.8	56.4	0.01
	111	3.8	11.1	27.2	22.5	0.41
	1040	5.8	5.1	12.5	6.8	8.30
	5070	11.0	1.2	2.7	0.8	185.1

High-efficiency Blue-emitting OLEDs

Ref. [1] Dong Ryun Lee, et.al., ACS Appl. Mater. Interfaces 2016, 8, 23190-23196

Optimized Performance

Ref. [1] Dong Ryun Lee, et.al., ACS Appl. Mater. Interfaces 2016, 8, 23190-23196

Towards Adaptive Lighting

Lighting technology

Display technology

Convergence of functionalities

Organic thin-

film

transistors

W. D. Bower, *Active Matrix Liquid Crystal Displays*, 1st ed. Burlington: Newnes, 2005.

Outline

Motivation and external drivers

- Recent advances:
 - Electrode engineering
 - Organic light-emitting diodes
 - Thin-film transistors

Organic Field-Effect Transistors: The Problem

Stability challenge: charge trapping leads to shifts in threshold voltage

$$\Delta V_{TH}(t) = \Delta V_{TH,1\infty} \cdot \left\{ 1 - \exp\left[-\left(\frac{t}{\tau_1}\right)^{\beta_1} \right] \right\}$$

OFETs with Bilayer Gate Dielectric

- US Patent # 9,368,737 B2, issued Jun. 14, 2016.
- D. K. Hwang et al., Advanced Materials 2011, 23, 1293.

Pioneered the use ALD in OFETs.

• X.-H. Zhang et al., Organic Electronics 2007, 8, 718.

Architecture for Stability Optimization

Oxide layer: Al₂O₃ (grown by ALD) Problem: corrosion in humid environment and high temperature Oxide layer: HfO₂/Al₂O₃ nanolaminate (grown by ALD) with different thickness

Compensation Effect in OFET with Bilayer Gate Geometry

Compensation due to two mechanisms with opposite effect

Bias Stress Tests @ Higher Temperature

On-state (A_33) ($V_{DS} = V_{GS} = -10$ V)

Stability of Thin-film Transistors

X. Jia, C. Fuentes-Hernandez, C.-Y. Wang, Y. Park, B. Kippelen, Science Advances 2018, 4, aao1705.

Georgia School of Electrical and Tech Computer Engineering

Technology Roadmap

Implantable, in vivo electronics -<u>Biocompatible</u>

Conformal, stretchable and wearable - <u>Soft</u>

All additive direct writing and 3D printing - <u>Flexible</u>

Photolithography and etching - <u>**Rigid**</u>

Georgia Tech Center for Organic Photonics and Electronics

Synopsis: Lessons Learned

- Science is your friend, keep exploring
- When you go in the lab be prepared for the unexpected
- Do not disregard outliers in your data sets
- Challenge the conventional wisdom and push the frontiers

Louis Pasteur

Thank you

