ME290R: Topics in Manufacturing Fall 2017

Nanoscale manipulation of materials

Lecture 2.2: Lithography Performance Criteria - Point Defects (Yield Modeling)

August 28, 2017

Hayden Taylor hkt@berkeley.edu

What factors need to be borne in mind when evaluating a lithography process?

Technical

- Dimensional accuracy and variability
- Pattern edge roughness
- Overlay accuracy
- Point defects

Economic

- Throughput (vs. yield)
- Materials, tooling, equipment, and energy costs

Environmental

- Materials usage and disposal (toxicity)
- Energy used in process
- Embodied energy

Yield unsdeling	nofer
Characterize yield at several stages (scales	
- Wafer yield - how many make it to probing?	
- Probe-testig Simple electrical testing	chip
- final testing - built in test structures.	different circuit blocks may have different defect responses. Core cloc
- Dre-by-dre (dip-dip)	
- functioned y'eld / "hard" -> bir -> parametric yield ("soft" ->	max clock speed? "binning"
	Core-scale characterisation?

Suppose Do is average of defects per unit area leading to a fault Expected of defects on wafer $M = A_C D_O C$ * thips on wafer

Yield modeling continued ...

- Possible permutations of the latations of the M defects

- If one dip is defet-free, # permetations is now (C-1) M

: probability that a given chip is defeat- free: (C-1)m = (1-1)M

Yield = lim (1-1) CACPO = exp(-AcDo)

(frauhas of chips hat make)

property Property of process

Probability of N clips having no defects: $\exp(-A_c D_o)^N = \exp(-N A_c D_o)$

How can we characterize manufactured patterns?

- Dimensionally
 - Scanning electron microscopy
 - Atomic force microscopy
 - Optically: microscopy, scatterometry, interferometry
- Functionally
 - Electrical measurements e.g. serpentine test structures
 - Optically, in the case of optical interconnect

Scanning electron microscopy: CDSEM

- Widespread use in semiconductor metrology
- Top-down imaging can give CD and LER information without destroying the wafer
- For cross-sectional (sidewall angle) information, cross-sectioning (typically with focused ion beam (FIB) milling) is needed

http://www.eejournal.com/archives/articles/ 20101026-synopsys/?printView=true

CD SEM – working principle

- Resolution < 1 nm
- Can determine topography and chemical composition
- Raster scanning of sample

- Both backscattered and secondary electrons can be sensed and used to create an image
- Secondary electrons are ejected from the sample atoms as a result of inelastic scattering interactions with beam electrons
- Backscattered electrons are reflected beam electrons – used to detect chemical composition

Atomic force microscopy

- Potential to give some sidewall information without sectioning the wafer
- However, the measurement obtained is the convolution of tip shape with the true topography.

Scatterometry – gathers average pattern geometry information from arrays of features

 Scattered intensities at several diffraction orders or wavelengths are compared to a model – geometric parameters such as CD, sidewall angle, and height are fit

Resonant $(\lambda) = R(d_1 d_2 w_1 w_2 P, n_i(\lambda), k_i(\lambda), n_i(\lambda), k_i(\lambda), n_i(\lambda), k_i(\lambda)) = Calculated zero order (OR) diffraction efficiency$

http://www.halbleiter.org/en/oxidation/metrology/

Electrical/functional test structures

- Basic electrical test structures
 - Serpentine detect open circuits
 - Comb detect short circuits
 - Must cover a large enough area to offer a reasonable probability of detecting an error without encountering an error on every chip

BIST – Built-In Self-Test circuits