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Smart sensors: modular, autonomous, reagentless, inline, minimal calibration, low-cost

* On-device intelligence
* Limited training data
 Human interpretability
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Intelligence for Wastewater

SCIENCES [N. Kshetry and L. R. Varshney, “Optimal Wastewater Management Using Noisy Sensor
SN[€]INHS4IN€] Fusion,” presented at Fifth Arab-American Frontiers of Science, Engineering, and
MEDICINE Medicine Symposium, Rabat, Morocco, Nov. 2017]
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“Shannon himself told me that he believes the most
promising new developments in information theory will
come from work on very complex machines, especially
from research into artificial intelligence.”

[L. R. Varshney, “Mathematizing the World,” Issues in Science and Technology, vol. 35, no. 2, pp. 93-95, Winter 2019.]
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Five meshing gears are arranged in a
horizontal line much like a row of
quarters on a table. If you turn the gear
on the furthest left clockwise, what will
the gear on the furthest right do?

[ ° ECE ILLINOIS



Five meshing gears are arranged in a
horizontal line much like a row of
quarters on a table. If you turn the gear
on the furthest left clockwise, what will
the gear on the furthest right do?

* In process of solving many gear problems, collaborative groups often
discovered underlying rule: if gears add up to odd number; first and
last gear will turn in the same direction (abstract parity rule)

* Once pair discovered rule, stopped motioning with their hands and
were able to solve a problem with 131 gears in about 1/10 the time

* Because pairs had to communicate to solve the problems, they
developed collaborative representations that neither would have
alone, and those representations were more abstract to
accommodate the two perspectives that each started out with

[Daniel L. Schwartz, “The Emergence of Abstract Representations in Dyad Problem Solving,” Journal of the Learning Sciences,
vol. 4, no. 3,, pp. 321-354, 1995.]
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Five meshing gears are arranged in a
horizontal line much like a row of
quarters on a table. If you turn the gear
on the furthest left clockwise, what will
the gear on the furthest right do?

Dyads learned a kind of general knowledge useful in later tasks
Learned rule was very intuitive and human-interpretable

Rule was based on mod-2 induced symmetry (group-theoretic
invariance)

Rule learning process proceeded through an interaction between two
agents
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Dimensions of interpretability [Selbst and Barocas, 2018]

 What sets machine learning models apart from other decision-
making mechanisms are their inscrutability and nonintuitiveness

— Inscrutability suggests that models available for direct inspection may defy
understanding,

— Nonintuitiveness suggests that even where models are understandable, they
may rest on apparent statistical relationships that defy intuition

— Most extant work on interpretable ML/AI only addresses inscrutability, but not
nonintuitiveness
* Dealing with inscrutability requires providing a sensible description
of rules; addressing nonintuitiveness requires providing satisfying
explanation for why the rules are what they are

For numerous settings, may need technical solutions to both
inscrutability and nonintuitiveness

E 8
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Human-interpretable concept learning

* Learn laws of nature from raw data, e.g. for scientific discovery or
for complex systems where epistemic uncertainty (unknown
unknowns) can be dangerous |Al safety]

* Learn what black box systems do, whether human or machine,
not just in terms of the statistical nature of bias but also the rules
that govern behavior Al ethics]

* Learn principles of human culture, e.g. what are the laws of music
theory that make Bach's chorales what they are or psychophysical
principles of flavor in world cuisines [Al creativity]

s(4,0)]

AVERAGE SURPRISE

S0 =

max
Pa(a):E[q(A)]2Q
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Structural
Invariances

Data/Model
Compression

Image Registration
and Clustering
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Learn human-interpretable concept hierarchies (not just rules)

w
w
a]
0
=
Diatonic
series of
seventh How to use this diagram
PENTATONIC Don't try learning a subject
SCALES from a higher level until each
TRy of the supporting lower levels
MINORSCALES have been thoroughly learnt!
..........

Molodic ||

DIATONIC CHORD
SEQUENCE
STRUCTURE

CADENCES

V-l = Authentie TV - 1 = Plagal

T-V=Hall V- VI=Deceptive

V- Tm - 1= Infermuplid

HARMONISED MAJOR SCALE

(Triads) o
I lIm Him IV ¥ Vim VIL VIII

TRIAD FORMULAS
1+3+5=Major 1443 4 &= Minor
1+3+45=Augmented 1 +53 +75 = Diminished
1+4+5=5us4 1+2+5=5us2
KEY SIGNATURES
Circle of FIFTHS ( # keys) Circle of FOURTHS (b keys)

Rule: Lip FIVE and SHARPEN Rule: Up FOUR and FLATTEN
the new SEVENTH note. fhe new FOURTH note.
Sequence of rew #s given by: Saquenca of mew b s given by

Fathor Chiarios Goes Down An Enlars Battie Batfie Erds And Down Goes Crarks’ Faer

Stave . Clefs . Note duration .

OTMDARD NOTATION =22,

Rests . Dots . Ties . Dynamics

MAJOR SCALEFORMULA  J7drdsdrdrdrds

on the CHROMATIC SCALE:

TONE and SEMITONE 2 SEMITONE is the interval between any two adjacent notes

a TONE is the interval between any two alternate notes

CHROMATIC SCALE ~ Ascending: EFF#GG#AA#BCCHDDARE

(Demonsirate using piano keyboard) Descending: EEbD Db CBBbAAbGGbFE

OPEN STRING NOTE NAMES Elephants And Donkeys Grow Big Ears

[http://www.teachguitar.com/content/tmpyramid.htm]

“Fundamentally, most current deep-
learning based language models
represent sentences as mere sequences
of words, whereas Chomsky has long
argued that language has a hierarchical
structure, in which larger structures are
recursively constructed out of smaller
components.”

— Gary Marcus |arXiv:1801.00631|
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Outline

* Automatic concept learning
— Group-theoretic framework for abstraction
— Connections to Shannon’s information lattice
— Iterative student-teacher algorithm
— Examples in music theory and elsewhere
— Applications in safety, ethics, and creativity
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Automatic concept learning: An automatic music theorist

MUS-ROVER, a way to learn the principles of quality (laws of music theory)

music pieces »| auto-theorist » theory (rules)

Computational creativity algorithms for music composition

theory (rules) »| auto-composer > music pieces
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Automatic concept learning: An automatic music theorist

Concept learning is phase before any task solving/performing

» Self-exploration: ultimate goal is learning domain concepts/knowledge
from universal priors—priors that encode no domain knowledge

*  Group-theoretic foundations and generalization of Shannon’s information lattice

» Self-explanation: aim for not only the learned results but also the entire
leaning process to be human-interpretable

* Iterative student-teacher architecture for learning algorithm, which produces
interpretable hierarchy of interpretable concepts (with a particular mechanistic
cause: symmetry) and its trace

e e
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Concept learning as a kind of abstraction process

Algorithms to automate abstraction in various concept learning tasks
almost all require handcrafted priors |Saitta and Zucker, 2013;
LeCun et al,, 2015; Bredeche et al., 2006; Yu et al,, 2016], similar to
innate biology [Marcus, 2018; Dietterich, 2018]
* Whether rules in automatic reasoning, distributions in Bayesian
inference, features in classifiers, or architectures in neural
networks, typically task-specific and/or domain-specific

* Aim to establish both a theoretical and an algorithmic foundation for
abstraction
* Consider the general question of conceptualizing a domain, a
task-free preparation phase before specific problem solving
* Consider symmetries in nature (or groups in mathematics), a
universal prior that encodes no domain knowledge

* Goalis to learn domain concepts/knowledge when our group-
theoretic abstraction framework is connected to statistical learning

I
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Representation: Data space

Data space: (X, py) or (X, p) for short
* Assume a data point x € X is an i.i.d. sample drawn from a
probability distribution p

 However, the data distribution p (or an estimate of it) is known

 The goal here is not to estimate p but to explain it

Chord space: X = 7*
il Soprano ﬁ E5 = —76-
)
chord: © = iz eX
- o B G4 — |67
_£L‘4_ J
pitch: z; € Z (C4 —60) | .  ‘ogeg?s Bpg— |58
voice: ¢ € {1,2,3,4}
SATB ms | O3 = |48
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Representation: Abstraction

An abstraction A is a partition of the data space X .
X = {1, %2, %3, %4, %5, Te }

A= {{z1,z¢},{x3}, {x2, 24, z5}}
) v ['4
cells (or less formally, clusters)

An concept is a partition cell.

A partition matrix A is a concise way of representing
an abstraction A .

L1 9 X3 T4 Ty Tg

1 0 0 0 0 1] 1stcell
A=10 0 1 0 0 O 2ndcell
01 0 1 1 0f 3rdcell
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Representation: Probabilistic Rule

A probabilistic rule 1s a pair:
(A, pa)

where A 1s an abstraction (partition);

PA 1s a probability distribution over
the abstracted concepts (cells).

0.5
0.4

I I 0. ]

-

A= {{3?1:-’136}-; {$3} {$2: $4:$5}}
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“Most birds fly; but rare for fish, amphibians, reptiles, mammals.”

Abstraction (of vertebrates):
Partition vertebrates into five clusters

Concepts:
Cluster A: mammals
Cluster B: reptiles
Cluster C: birds
Cluster D: fish
Cluster E: amphibians

Rule:
vertebrates that fly

A B C D E cluster

A statistical pattern on abstracted concepts (clusters)
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Abstraction as partitioning (clustering) a data space X

Definition Notation
abstraction | partition A
concept partition cell CeA
rule partition & probability distribution  (A.p4)

* A partition is not an equivalence relation (one is a set, the other is

a binary relation), but convey equivalent ideas since they induce
each other bijectively

* An equivalence relation explains a partition: elements of a set X
are put in the same cell because they are equivalent

* Abstracting the set X involves collapsing equivalent elements in X
into a single entity (an equivalence class or partition cell) where
collapsing is formalized by taking the quotient

ECE ILLINOIS
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Abstraction universe as partition lattice

* Even for a finite set X of relatively small size, the complete
abstraction universe By can be quite large and complicated to
visualize (Bell number grows very quickly, to say nothing of edges)

 However, not all arbitrary partitions are of interest

What part of B should we focus on?
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Abstraction universe as partition lattice

What part of B should we focus on?

* Feature-induced abstractions

* Induced by equivalent preimages of some feature function ¢: X —
I where Vis set of possible feature values

* Consider a pool of feature functions @, spanned by a finite set of
basis features that are individually “simple” (e.g. basic arithmetic
operators like sort and mod) and easy for people to interpret

* Key ideais to break a rich pool of domain-specific features into a
set of domain-agnostic basis features as building blocks

 Symmetry-induced abstractions

1[0
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Symmetry-induced abstraction

* Consider the symmetric group (Sy,o) defined over a set X, whose
group elements are all the bijections from X to X and whose group
operation is (function) composition

* Abijection from X to X is also called a transformation of X, so the
symmetric group Sy comprises all transformations of X, and is
also called the transformation group of X, denoted F(X)

* Given a set X and a subgroup H < F(X), we define an H-action on
Xbyh-x =h(x)forany h € H, x € X and the orbitof x € X
under H as the set Hx = {h(x)|h € H}

* Each orbit is an equivalence class, so the quotient X/H = X/~ isa
partition of X

* We say this abstraction respects H-symmetry or H-invariance

group action equiv. rel.

: . IS .
» orbits » a partition — an abstraction of X

a subgroup of F(X)

I
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Duality: From subgroup lattice to abstraction (semi)universe

Definition The abstraction generating function is the mapping m: 7'[1:()() -
By, where Hry, is the collection of all subgroups of F(X), By is the
family of all partitions of X, and for any H € Hg), t(H) = X/H.

Theorem (Duality) Let (}[S(X), <) be the subgroup lattice for F(X) and =
the abstraction generating function. Then (n(?—[lif(x)), <) is an abstraction
meet-semiuniverse for X. Thatis:

1. partial-order reversal: if A < B,thenn(4) > n(B)
2. strong duality: m(AV B) = n(4) A (B)
3. weak duality: t(AAB) > n(A) V n(B)

AV B m(AV B)
m(A) Am(B)
A A v T ’1 Vo B
ANDB AﬁB)
(a) From join to meet. (b) From meet to join.
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Duality: From subgroup lattice to abstraction (semi)universe

 If one has already computed abstractions m(A) and 7 (B), then instead of
computing (A V B) from A V B, one can compute the meet m(4) A n(B),
which is generally computationally less expensive than computing A V B
and identifying all orbits in m(4A V B)

* The computer algebra system GAP provides efficient algorithmic
methods to construct the subgroup lattice for a given group, and even
maintains data libraries for special groups and their subgroup lattices

(a) Subgroups under consideration. (b) Spaces under consideration.
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BHE LA e o e * Aninformation element is an
i LATTICE THEORY OF INFORKATION . .
by equivalence class of random variables
G Be Shanncon . .
w.r.t. inducing the same o-algebra

* An information lattice is a lattice of information elements, where partial
order defined by x < y & H(x|y) = 0 where H is the Shannon entropy.
The join of two information elements the total information; the meet of
two information elements is the common information

* Our abstraction-generation framework generalizes Shannon'’s

information lattice, without needing to introduce information-theoretic
functionals like entropy

* More importantly gives generating chain to bring learning into picture

Separation Of Clustering Partition lattice Information lattice
.. . element partition (P); information element (z);

from statistics: partition clustering (X, P); probability space (X, X, P);
lattice can be thought as equiv. class of classifications equiv. class of random variables
an information lattice partial order z fé‘? <y < Hzly)=0

) - join V r+y
without probability oot PAO oy
measure metric undefined plx,y) = H(x|ly) + H(y|x)

I
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Outline

* Automatic concept learning
— Group-theoretic framework for abstraction
— Connections to Shannon’s information lattice
— Iterative student-teacher algorithm
— Applications in music theory and elsewhere
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Information-theory inspired algorithm for rule learning

Learning is achieved by statistical inference on a partition lattice

The Self-Learning Loop

A Teacher-Student Architecture: Learning by Comparison

(k)

pilzfz: 1\“ 'I//// Pstu

Discriminator teacher | The k-th Loop student Generator

A\ ]

ruleset

(A® p409) SN " {(A(i)vp/-l“))}

k

=1
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Teacher: a Discriminative Model

The teacher solves an optimization problem:

1)
maximize D ( )
Aemn KL pA iy || PA

subject to  the abstraction A satisfying
the memorability condition

the hierarchy condition

Px CPX : abstraction hierarchy
part of the complete partition lattice

Try to adjust the student’s information lattice
to match the target information lattice (input).
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Student: a Generative Model

The student solves another optimization problem:

Tsallis entropy: measures randomness

. -
- . k e k:
maximize Sq(pitf,,) = (q—1) ' (1 - “pgti”g)
pf;t1)1.EA|X|

subject to A(i)piﬁ =il atas B Ly e gl
s

partition matrix: represents abstraction

l

linear equality constraint

q = 2 : gin1 impurity function

Linear Least-Squares Problem!
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Information-theory inspired algorithm for rule learning

Learning is achieved by statistical inference on a partition lattice

MUS-ROVER’s self-learning loop:

The iterative cooperation between a discriminator
(teacher) and a generator (student).

The teacher solves: music The student solves:
o input ‘" "
maximize [ (p Ol p ) ) (k—1) (k) maximize S, (p
b, stu @ P = Pstu Patu q stu
VR \L77 A

subject to ¢ € &\ PHFD

aihi (k)
teacher | The k-th Loop | student | Stbicct to po, €1y

\ Yl / p

k
psti}L S Fk
i mization) rule ruleset " | |
1screte optiumization k mear least-squares
; Fk\_/ {Fi}izl E
max. Bayesian surprise max. creativity
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Simple human-interpretable rules

Compositional Rule Examples:

feature
T~ ¢ . pitch class in the soprano voice

feature
d1str1but1oﬁ““*p I B _ l I

C C: D Di E F Fi G

This rule can be interpreted or translated to:
“The soprano voice is built on a diatonic scale.”
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Hierarchical concept learning

Compositional Rule Examples:

¢ . interval class between soprano and bass

Py I__II--III__1mm

P8 m2 M2m3 M3 P4 TT P5 m6 M6 m7 M7
“Individual perfect octaves (P8s) are favored as most consonant.”

-_III Illl- 2-gram

P8 m2 M2m3 M3 P4 TT P5 m6 M6 m7 M7 conditioned on P8
“Parallel perfect octaves (P8s) are uncommon.”

ECE ILLINOIS



Hierarchy of music theory concepts

L

N raw representation
B in the tem;r(/ closed position V7 chord

RN

root position 7th chord

4

. © ©® o ©o higher (deeper)-level
N /7 . ;l:} d abstractions
sonority

Compositional rules are extracted not simply as a linear list, but as
hierarchical families and sub-families.

10 ECE ILLINOIS
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MUS-ROVER recovers nearly all known music theory

+ voice leading
* counter point

« scale, consonance & dissonance
* voice spacing, crossing, overlap
+ chord quality, inversion, progression

« music transformations: OPTIC
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Generalizing to other topic domains

A B C () Amacrine Neurogenic

@ Early RPCs @ Photo. Precurs.

Time
E10 PO [ > @E14 @EI8 @P2 @ Int. RPCs .R‘(E,CS
) 3 “l @lateRPCs 43
4 % - R
& o ~ s o vy
L] ~ byl “
c oy 0y e Ry
N @ r 7.t r
e ¥ L A -
[ ¥ e - ™ "
Horizontal ;1‘:&::?'13.:_ ':.‘" "":’ ‘- # “%’ 0 q?i‘;a;"g{?.f ':f‘" - &
’ L PRt 4
. ".u&" er:';‘.‘\’:" r o . . 'r;&".”f':';'f":"'r-
&&-‘ ,?l:.l- ' -~ m}‘;‘“?c? - LY
e ’ l.?';“ - "' i
" b SRS LER
e e
. . 404, . .
20 0 20 40 -40 20 0 20 40
tSNE1_pos tSNE1_pos
Photo. Precurs.
Neurogenic
3 RGCs
=, Amacrine Cells
= Late RPCs
8 Int. RPCs

Early RPCs

.9, O &880 Q8 A4 %
%20 %% %%%%ﬁp%&?%%"@ﬁ 0

[B. Clark, et al., “Comprehensive analysis of retinal development at single cell resolution identifies NFI factors as essential for
mitotic exit and specification of late-born cells,” bioRxiv, 2018.]

* Single-cell RNA sequence data analysis for understanding the rules
that govern pattern formation in neurodevelopment

* Rediscover physical laws and principles such as heliocentrism using
data from Copernicus
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Human-interpretable concept learning

* Learn laws of nature from raw data, e.g. for scientific discovery or
for complex systems where epistemic uncertainty (unknown
unknowns) can be dangerous |Al safety]

* Learn what black box systems do, whether human or machine,
not just in terms of the statistical nature of bias but also the rules
that govern behavior Al ethics]

* Learn principles of human culture, e.g. what are the laws of music
theory that make Bach's chorales what they are or psychophysical
principles of flavor in world cuisines [Al creativity]

10 ° ECE ILLINOIS




Algorithm fusion to deal with epistemic uncertainty

Estimation:
Treatment Rules
Defines Boundaries

One Class Wastewater
Classifier Classification

(Switch)

Training Statistical

Dataset Modelling
Creation

Detection:
Training Dataset
Defines Boundaries

[N. Kshetry and L. R. Varshney, “Safety in the Face of Unknown Unknowns: Algorithm Fusion in Data-Driven Engineering
Systems,” to appear in Proceedings of the 2019 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Brighton, England, 12-17 May 2019.]

ECE ILLINOIS




Al for social good

Obesity: Strong association of obesity rates in urban Urban Blight: Rank vacant parcels according to
neighborhoods with social capital measures (venues for  likelihoods of occupied status and neighborhood impact
interaction as per Foursquare) * Dbipartite ranking + spatiotemporal modeling

* regression models

[Data for Good L [Technological Forecasting
Exchange (D4GX), b and Social Change, 2014]
2015] b

Sustainable Farming: Redistribution of permits in Sustainable/Healthy Food: Computationally create
Himalayas can significantly improve sustainability culinary recipes according to perceived flavor and
(environmental/economic) of timber farming novelty using ingredients such as algae protein

* network flow optimization * computational creativity and hedonic perception
[Data for Good P, < [Good Food
Exchange (D4GX), M 2 Conference, 2018]
2018] N/

Villages to Priority Tree Plantings
Based on Optimization Model
With Clustering s 5 m ELra—,
in Bllaspur District, Himachal Pradesh, India Rty
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The need to control unintended consequences (FAT)

Human Resources: Rank candidates according to
likelihoods of quality, onboarding, and attrition using
historical training data

* bipartite ranking

RISHNA PATTABHIRAMAN
[ln t. Conﬁ k 508-410-0168(n 8k krishna@yahoo.com
E t d 19 Butterfield Drive, Westborough, MA 01581
xtending
Database o e e e e e o
Not only ideates needs-base Fhabls e ~#a= netionable go-to-.. q_ghl_ drives the entire
Technology devolopmant ifacycle, -@n'.m.. 4 ihat acceic. . .:::::‘rg::mu, Business success

Y ) 28
Research & Development, Go-/o-Market Strategy, Product Lifacycle Management, Standards Development
IT Strategys | ructure/Design, Softv

(EDBT), 2013]

> nt, Project Management

XPERIENCE FiY

Reva Systems — Westford, MA 2004 - Present
Provider of RFID and RTLS prodkicts and solutions « “oployed at 600+ sites worfdwide.

VICE PRESIDENT
One of the founding team members, acted & rf +f architect, subject s ‘ sert. and made key contributions to
Reva's product developmant. Authored werl ' sandard and representsd «. ... af standards groups. As the head of
solutions and technaley. - S hnology the needs and of

global customers planning fo deploy RFID a« 5 solutions. Led solution enainaaring team and managed solutions
development teams in China and US.

. and company to O; Patient Logistics in Healthcare - market sizing. go-
to-market, competitive analysis, product positioning and validation, and execution plans.

= Established channel pa-inarships with Europe and Middle East to build recurring revenue. Negotiated and
closed a diverse set of clisnts fo maxii . growth.

Child Abuse: Prioritize reported cases of child abuse
according to likelihoods of indication and severity,
under fairness constraints

* Dbipartite ranking + queuing theory

[18th National Conference
on Child Abuse and
Neglect, 2012]

Racial Discrimination: Bounded rationality by human
agents, together with segregation, yields information-
based model of discrimination

« statistical signal processing + quantization theory

[Proceedings of the IEEE,
2017]

Impact Sourcing: Improve efficiency of routing and
scheduling tasks to workers in Samasource system to
enable more people out of poverty

* constrained max-weight scheduling

[I[EEE/ACM
Transactions on
Networking, 2018]
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An ethical framework from biomedicine [Beauchamp and Childress]

Transfer to engineering so as to capture utilitarian and rights-based
approaches to ethical thinking in a simple manner

* Justice: The principle of fairness and equality among individuals

* Beneficence: The principle of acting with the best interests of
others in mind

* Non-maleficence: The principle that “above all, do no harm,” as in
the Hippocratic Oath

* Respect for Autonomy: The principle that individuals should have
the right to make their own choices

(All of these principles should, prima facie, be held and when in conflict
should be given equal weight)

[L. R. Varshney, “Engineering for Problems of Excess,” in Proc. 2014 IEEE Int. Symp. Ethics in Engineering, Science, and Technology, May 2014.]

E44
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An ethical framework from biomedicine [Beauchamp and Childress]

Justice: The principle of fairness and equality among individuals
[FAT]

* Beneficence: The principle of acting with the best interests of
others in mind |Al for Good]

* Non-maleficence: The principle that “above all, do no harm,” as in
the Hippocratic Oath |Al for Good / FAT]

* Respect for Autonomy: The principle that individuals should have
the right to make their own choices

Human-interpretable machine learning may provide
avenues for addressing these ethical challenges, especially
autonomy
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And Now, From I.B.M., Chef Watson
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Dlgltal GaStI'OIIOIll\Y WHEN AN IBM ALGORITHM COOKS, THINGS GET COMPLICATED—AND TASTY.
L L

IBM’s Al-like computer systems aren’t limited
to Watson, the Jeopardy-winning
supercomputer that schooled Ken Jennings on
national television. In fact, IBM researchers

Ehg:;"m foresee anot-so-distant future when
PRPAYA algorithms will be a replacement for inefficient
Robe: The Ne AND " . .
e DB customer service models, a diagnostic tool for

1.B.M. plans to serve a breakfast pastry devised by Watson and the chef James

meeting on Thurs

@

Briscione at its

SALAD

COCONUT

doctors, and believe it or not, chefs.

Researcher Lav Varshney has already built an
algorithm that creates recipes from parameters

AND LIME ; s : ;e
; 3 AC like cuisine type, dietary restrictions, and
L.B.M.’s Watson beat “Jeopardy” champions two FACEDOOK i i i :
; ; % 3 CRERH course. The system determines optimal
years ago. But can it whip up something tastyin = w TwiTTER A mixtures based on three things: tens of
the kitchen? 3§ cooGLe- thousands of recipes taken from sources like
- . GHRANELZZED the Institute of Culinary Educlanon or the ‘
That is just one of B8 save BANANAS Internet, a database of hedonic psychophysics
1(\:’1(;)‘1";-:;:11 i the questions that [ Al (what humans like to eat), and food chemistry.
N Fo s Bhls L.B.M. is asking as @ suse Right now, the rfas'lllt is like a pre-Julia Child
: Dicty cookbook, providing chefs, who already know
technology it tries to expand : A : i
industry, y = S prINT cooking basics, with suggestions for billions of
including its artificial ingredient combinations but no instructions.
start-ups, the Internet, intelligence @ rerriNTS T
enterprise and gadgets. To test its skill, we pitted IBM’s algorithm
On Twitter: @nytimesbits. technology and : P A
i o . against go-to-recipe resource Epicurious
turn Watson into : ,
_ (owned by WIRED's parent company, Condé
something that Nast). We searched the site for a Caribbean

actually makes commercial sense.

[The New York Times, 27 Feb. 2013]
[San Jose Mercury News, 28 Feb. 2013]
[IEEE Spectrum, 31 May 2013]

[Wired, 1 Oct. 2013]

Prop styling: Laurie Raab | (8 Justin

Fantl

plantain dessert and found a tasty concoction
with rum and coconut sauce. With the same
parameters, IBM’s computer generated a list of
about 50 ingredients, including orange,
papaya, and cayenne pepper, from which IBM
researcher and professional chef Florian Pinel
developed a mind-blowing Caymanian parfait.
While the IBM dessert tasted better, it was also
insanely elaborate, so well call it a draw.
—Allison P. Davis
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Engineering processes: Rube Goldberg Machines

Flowing
Human air
—_— Convert |eeciean.
; Eleqtrlcgl E. to >
EE. Kinetic E. K E.

Transport
light source

Convert
Optical E. to
Thermal E.

...... » Convert
Chemical E.
I to K.E.
TE.

K.E.

Convert |
K.E.to E.E.

E.E.

Convert E.E.
to Acoustic E.

(
T

[X. Ge, J. Xiong, and L. R. Varshney, “Computational Creativity for Valid Rube Goldberg Machines,” in Proceedings of the
Ninth International Conference on Computational Creativity (ICCC), Salamanca, Spain, 25-29 June 2018.]
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Sustainable building materials

® Training Samples
Better Generated Samples
All Generated Samples

Generated ) |
concrete ‘ [ 1 ' T0.24
formula =

.2
=1
StrErIE[h —_— r 1)22%.
] Environmental Predicted 2
Age —— impact ——+ enwironmental 0.20 §
predictor impact %
Ervironmental 0.18 3
impact 2
i =
r0.16 =2
©
2]
Predicted 0.14
strength -1 s
Latent —_— Strength 1.4. <$>'°
predictors 1.3 @
code . $
obal warming potential 300 ‘?S.’\b

_—t — appropriate

predictor

[X. Ge, R. T. Goodwin, J. R. Gregory, R. E. Kirchain, J. Maria, and L. R. Varshney, “Accelerated Discovery of Sustainable
Building Materials,” to appear in Proceedings of the AAAI Spring Symposium on Towards Al for Collaborative Open

Science, Palo Alto, California, 25-27 March 2019.]
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From automatic music theorist to compose

MUS-ROVER, a way to learn the principles of quality (laws of music theory)

music pieces

auto-theorist

» theory (rules)

» theory (rules)

auto-composer

Computational creativity algorithms for music composition

> music pieces
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In creative composition, want to break rules with a consistent style

Simultaneous Rule Realization and Selection

given . ——srule _—, . composition
: selection realization |—

ruleset : < subset ¥ : model
S N EEEEEEEEEEEEEEEEEEEEEENEEEEEE EEEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEE EEEEEEEEEEEEE o *

shows consistency,
preference, creativity...

Solve a simplex constrained bi-convex problem:

minimize &(p.w; A, b) + )\ @

subject to (p) .e A" @e A
/ \ \

composition weights of individual group group
model rule components penalty elastic-net
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Interpretable concept learning to enable augmented intelligence

Problem Solving
Moral Reasoning
Safety

Creativity
Transfer

Lav R. Varshney, University of Illinois at Urbana-Champaign

varshney@lIllinois.edu @Irvarshney
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