
Human-Interpretable Concept Learning via 
Information Lattices

Lav R. Varshney
University of Illinois at Urbana-Champaign

28 February 2019



Haizi Yu

H. Yu, I. Mineyev, and L. R. Varshney, “A Group-Theoretic Approach to 
Abstraction: Hierarchical, Interpretable, and Task-Free Clustering,” 
arXiv:1807.11167 [cs.LG].

H. Yu, T. Li, and L. R. Varshney, “Probabilistic Rule Realization and Selection,” 
in NeurIPS 2017.

H. Yu and L. R. Varshney, “Towards Deep Interpretability (MUS-ROVER II): 
Learning Hierarchical Representations of Tonal Music,” in ICLR 2017.

H. Yu, L. R. Varshney, G. E. Garnett, and R. Kumar, “Learning Interpretable 
Musical Compositional Rules and Traces,” in ICML WHI 2016.

2



[N. Kshetry and L. R. Varshney, “Optimal Wastewater Management Using Noisy Sensor 
Fusion,” presented at Fifth Arab-American Frontiers of Science, Engineering, and 
Medicine Symposium, Rabat, Morocco, Nov. 2017]

Smart sensors: modular, autonomous, reagentless, inline, minimal calibration, low-cost

• On-device intelligence
• Limited training data
• Human interpretability
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“Shannon himself told me that he believes the most 
promising new developments in information theory will 
come from work on very complex machines, especially 
from research into artificial intelligence.” [J. Campbell, 

Grammatical Man, 1982]

[L. R. Varshney, “Mathematizing the World,” Issues in Science and Technology, vol. 35, no. 2, pp. 93–95, Winter 2019.]
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Five meshing gears are arranged in a 
horizontal line much like a row of 
quarters on a table.  If you turn the gear 
on the furthest left clockwise, what will 
the gear on the furthest right do?
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[Daniel L. Schwartz, “The Emergence of Abstract Representations in Dyad Problem Solving,” Journal of the Learning Sciences, 

vol. 4, no. 3,, pp. 321-354, 1995.]

Five meshing gears are arranged in a 
horizontal line much like a row of 
quarters on a table.  If you turn the gear 
on the furthest left clockwise, what will 
the gear on the furthest right do?

• In process of solving many gear problems, collaborative groups often 
discovered underlying rule: if gears add up to odd number, first and 
last gear will turn in the same direction (abstract parity rule)

• Once pair discovered rule, stopped motioning with their hands and 
were able to solve a problem with 131 gears in about 1/10 the time

• Because pairs had to communicate to solve the problems, they 
developed collaborative representations that neither would have 
alone, and those representations were more abstract to 
accommodate the two perspectives that each started out with
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Five meshing gears are arranged in a 
horizontal line much like a row of 
quarters on a table.  If you turn the gear 
on the furthest left clockwise, what will 
the gear on the furthest right do?

• Dyads learned a kind of general knowledge useful in later tasks

• Learned rule was very intuitive and human-interpretable

• Rule was based on mod-2 induced symmetry (group-theoretic 
invariance)

• Rule learning process proceeded through an interaction between two 
agents 
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Dimensions of interpretability [Selbst and Barocas, 2018]

• What sets machine learning models apart from other decision-
making mechanisms are their inscrutability and nonintuitiveness
– Inscrutability suggests that models available for direct inspection may defy 

understanding, 

– Nonintuitiveness suggests that even where models are understandable, they 
may rest on apparent statistical relationships that defy intuition

– Most extant work on interpretable ML/AI only addresses inscrutability, but not 
nonintuitiveness

• Dealing with inscrutability requires providing a sensible description 
of rules; addressing nonintuitiveness requires providing satisfying 
explanation for why the rules are what they are

For numerous settings, may need technical solutions to both 
inscrutability and nonintuitiveness
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Human-interpretable concept learning

• Learn laws of nature from raw data, e.g. for scientific discovery  or 
for complex systems where epistemic uncertainty (unknown 
unknowns) can be dangerous [AI safety]

• Learn what black box systems do, whether human or machine, 
not just in terms of the statistical nature of bias but also the rules 
that govern behavior [AI ethics]

• Learn principles of human culture, e.g. what are the laws of music 
theory that make Bach’s chorales what they are or psychophysical 
principles of flavor in world cuisines [AI creativity]
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Learn human-interpretable concept hierarchies (not just rules)

[http://www.teachguitar.com/content/tmpyramid.htm]

“Fundamentally, most current deep-
learning based language models 
represent sentences as mere sequences 
of words, whereas Chomsky has long 
argued that language has a hierarchical 
structure, in which larger structures are 
recursively constructed out of smaller 
components.”

– Gary Marcus [arXiv:1801.00631] 
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▪ Automatic concept learning

– Group-theoretic framework for abstraction

– Connections to Shannon’s information lattice

– Iterative student-teacher algorithm

– Examples in music theory and elsewhere

– Applications in safety, ethics, and creativity

Outline
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Automatic concept learning: An automatic music theorist

MUS-ROVER, a way to learn the principles of quality (laws of music theory)

Computational creativity algorithms for music composition 
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MUS-ROVER

MUS-NET
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Automatic concept learning: An automatic music theorist

MUS-ROVER, a way to learn the principles of quality (laws of music theory)

Computational creativity algorithms for music composition 
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Concept learning is phase before any task solving/performing

• Self-exploration: ultimate goal is learning domain concepts/knowledge 
from universal priors—priors that encode no domain knowledge

• Group-theoretic foundations and generalization of Shannon’s information lattice

• Self-explanation: aim for not only the learned results but also the entire 
leaning process to be human-interpretable

• Iterative student-teacher architecture for learning algorithm, which produces 
interpretable hierarchy of interpretable concepts (with a particular mechanistic 
cause: symmetry) and its trace



• Algorithms to automate abstraction in various concept learning tasks 
almost all require handcrafted priors [Saitta and Zucker, 2013; 
LeCun et al., 2015; Bredeche et al., 2006; Yu et al., 2016], similar to 
innate biology [Marcus, 2018; Dietterich, 2018]
• Whether rules in automatic reasoning, distributions in Bayesian 

inference, features in classifiers, or architectures in neural 
networks, typically task-specific and/or domain-specific 

• Aim to establish both a theoretical and an algorithmic foundation for 
abstraction
• Consider the general question of conceptualizing a domain, a 

task-free preparation phase before specific problem solving 
• Consider symmetries in nature (or groups in mathematics), a 

universal prior that encodes no domain knowledge

• Goal is to learn domain concepts/knowledge when our group-
theoretic abstraction framework is connected to statistical learning 

16

Concept learning as a kind of abstraction process
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Representation: Data space

Data space: 𝑋, 𝑝𝑋 or 𝑋, 𝑝 for short
• Assume a data point 𝑥 ∈ 𝑋 is an i.i.d. sample drawn from a 

probability distribution 𝑝

• However, the data distribution 𝑝 (or an estimate of it) is known

• The goal here is not to estimate 𝑝 but to explain it
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Representation: Abstraction
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Representation: Probabilistic Rule
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• A partition is not an equivalence relation (one is a set, the other is 
a binary relation), but convey equivalent ideas since they induce 
each other bijectively

• An equivalence relation explains a partition: elements of a set X
are put in the same cell because they are equivalent

• Abstracting the set X involves collapsing equivalent elements in X
into a single entity (an equivalence class or partition cell) where 
collapsing is formalized by taking the quotient

Abstraction as partitioning (clustering) a data space X



• A set X can have multiple partitions (Bell number 𝐵 𝑋 )

• Let 𝔅𝑋
∗ denote the family of all partitions of a set X, so 𝔅𝑋

∗ = 𝐵 𝑋

• Compare partitions of a set by a partial order on 𝔅𝑋
∗

• Partial order yields a partition lattice, a hierarchical 
representation of a family of partitions
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Abstraction universe as partition lattice



• Even for a finite set X of relatively small size, the complete 
abstraction universe 𝔅𝑋

∗ can be quite large and complicated to 
visualize (Bell number grows very quickly, to say nothing of edges)

• However, not all arbitrary partitions are of interest

23

Abstraction universe as partition lattice

What part of 𝔅𝑋
∗ should we focus on?



• Even for a finite set X of relatively small size, the complete 
abstraction universe 𝔅𝑋

∗ can be quite large and complicated to 
visualize (Bell number grows very quickly, to say nothing of edges)

• However, not all arbitrary partitions are of interest

• Feature-induced abstractions 
• Induced by equivalent preimages of some feature function 𝜙: 𝑋 →
𝑉 where V is set of possible feature values

• Consider a pool of feature functions Φ, spanned by a finite set of 
basis features that are individually “simple” (e.g. basic arithmetic 
operators like sort and mod) and easy for people to interpret

• Key idea is to break a rich pool of domain-specific features into a 
set of domain-agnostic basis features as building blocks

• Symmetry-induced abstractions
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Abstraction universe as partition lattice

What part of 𝔅𝑋
∗ should we focus on?
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Symmetry-induced abstraction

• Consider the symmetric group 𝑆𝑋 ,∘ defined over a set X, whose 
group elements are all the bijections from X to X and whose group 
operation is (function) composition

• A bijection from X to X is also called a transformation of X, so the 
symmetric group 𝑆𝑋 comprises all transformations of X, and is 
also called the transformation group of X, denoted F 𝑋

• Given a set X and a subgroup 𝐻 ≤ F 𝑋 , we define an H-action on 
X by ℎ ∙ 𝑥 = ℎ 𝑥 for any ℎ ∈ 𝐻, 𝑥 ∈ 𝑋 and the orbit of 𝑥 ∈ 𝑋
under H as the set  𝐻𝑥 = ℎ 𝑥 |ℎ ∈ 𝐻

• Each orbit is an equivalence class, so the quotient 𝑋/𝐻 = 𝑋/~ is a 
partition of X

• We say this abstraction respects H-symmetry or H-invariance
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Duality: From subgroup lattice to abstraction (semi)universe

Definition The abstraction generating function is the mapping  𝜋: ℋF 𝑋
∗ →

𝔅𝑋
∗ , where ℋF 𝑋

∗ is the collection of all subgroups of F 𝑋 , 𝔅𝑋
∗ is the 

family of all partitions of X, and for any 𝐻 ∈ ℋF 𝑋
∗ , 𝜋 𝐻 = 𝑋/𝐻.

Theorem (Duality) Let ℋF 𝑋
∗ , ≤ be the subgroup lattice for F 𝑋 and 𝜋

the abstraction generating function.  Then 𝜋 ℋF 𝑋
∗ , ≼ is an abstraction 

meet-semiuniverse for X.  That is:

1. partial-order reversal: if 𝐴 ≤ 𝐵, then 𝜋 𝐴 ≽ 𝜋 𝐵

2. strong duality: 𝜋 𝐴 ∨ 𝐵 = 𝜋 𝐴 ∧ 𝜋 𝐵

3. weak duality: 𝜋 𝐴 ∧ 𝐵 ≽ 𝜋 𝐴 ∨ 𝜋 𝐵
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Duality: From subgroup lattice to abstraction (semi)universe

• If one has already computed abstractions 𝜋 𝐴 and 𝜋 𝐵 , then instead of 
computing 𝜋 𝐴 ∨ 𝐵 from 𝐴 ∨ 𝐵, one can compute the meet 𝜋 𝐴 ∧ 𝜋 𝐵 , 
which is generally computationally less expensive than computing 𝐴 ∨ 𝐵
and identifying all orbits in 𝜋 𝐴 ∨ 𝐵

• The computer algebra system GAP provides efficient algorithmic 
methods to construct the subgroup lattice for a given group, and even 
maintains data libraries for special groups and their subgroup lattices
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• An information element is an 
equivalence class of random variables 
w.r.t. inducing the same 𝜎-algebra

• An information lattice is a lattice of information elements, where partial 
order defined by 𝑥 ≤ 𝑦 ⟺ 𝐻 𝑥|𝑦 = 0 where H is the Shannon entropy. 
The join of two information elements the total information; the meet of 
two information elements is the common information

• Our abstraction-generation framework generalizes Shannon’s 
information lattice, without needing to introduce information-theoretic 
functionals like entropy

• More importantly gives generating chain to bring learning into picture

Separation of clustering 
from statistics: partition 
lattice can be thought as 
an information lattice 
without probability 
measure



▪ Automatic concept learning

– Group-theoretic framework for abstraction

– Connections to Shannon’s information lattice

– Iterative student-teacher algorithm

– Applications in music theory and elsewhere

Outline
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Information-theory inspired algorithm for rule learning

Learning is achieved by statistical inference on a partition lattice
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Discriminator Generator
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Information-theory inspired algorithm for rule learning

Learning is achieved by statistical inference on a partition lattice
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Simple human-interpretable rules
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Hierarchical concept learning
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Hierarchy of music theory concepts
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MUS-ROVER recovers nearly all known music theory
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Generalizing to other topic domains

[B. Clark, et al., “Comprehensive analysis of retinal development at single cell resolution identifies NFI factors as essential for 
mitotic exit and specification of late-born cells,” bioRxiv, 2018.]

• Single-cell RNA sequence data analysis for understanding the rules 
that govern pattern formation in neurodevelopment 

• Rediscover physical laws and principles such as heliocentrism using 
data from Copernicus
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Human-interpretable concept learning

• Learn laws of nature from raw data, e.g. for scientific discovery  or 
for complex systems where epistemic uncertainty (unknown 
unknowns) can be dangerous [AI safety]

• Learn what black box systems do, whether human or machine, 
not just in terms of the statistical nature of bias but also the rules 
that govern behavior [AI ethics]

• Learn principles of human culture, e.g. what are the laws of music 
theory that make Bach’s chorales what they are or psychophysical 
principles of flavor in world cuisines [AI creativity]
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Algorithm fusion to deal with epistemic uncertainty

[N. Kshetry and L. R. Varshney, “Safety in the Face of Unknown Unknowns: Algorithm Fusion in Data-Driven Engineering 
Systems,” to appear in Proceedings of the 2019 IEEE International Conference on Acoustics, Speech, and Signal 
Processing (ICASSP), Brighton, England, 12-17 May 2019.]



Obesity: Strong association of obesity rates in urban 
neighborhoods with social capital measures (venues for 
interaction as per Foursquare)
• regression models

Urban Blight: Rank vacant parcels according to 
likelihoods of occupied status and neighborhood impact
• bipartite ranking + spatiotemporal modeling

Sustainable Farming: Redistribution of permits in 
Himalayas can significantly improve sustainability 
(environmental/economic) of timber farming
• network flow optimization

Sustainable/Healthy Food: Computationally create 
culinary recipes according to perceived flavor and 
novelty using ingredients such as algae protein
• computational creativity and hedonic perception

AI for social good

[Data for Good 
Exchange (D4GX), 
2018]

[Technological Forecasting 
and Social Change, 2014]

[Good Food 
Conference, 2018]

[Data for Good 
Exchange (D4GX), 
2015]
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Racial Discrimination: Bounded rationality by human 
agents, together with segregation, yields information-
based model of discrimination
• statistical signal processing + quantization theory

Child Abuse: Prioritize reported cases of child abuse 
according to likelihoods of indication and severity, 
under fairness constraints
• bipartite ranking + queuing theory

Impact Sourcing: Improve efficiency of routing and 
scheduling tasks to workers in Samasource system to 
enable more people out of poverty
• constrained max-weight scheduling

The need to control unintended consequences (FAT)

[18th National Conference 
on Child Abuse and 
Neglect, 2012]

[IEEE/ACM 
Transactions on 
Networking, 2018]

Human Resources: Rank candidates according to 
likelihoods of quality, onboarding, and attrition using 
historical training data
• bipartite ranking

[Int. Conf. 
Extending 
Database 
Technology 
(EDBT), 2013]

[Proceedings of the IEEE, 
2017]
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An ethical framework from biomedicine [Beauchamp and Childress]

Transfer to engineering so as to capture utilitarian and rights-based 
approaches to ethical thinking in a simple manner

• Justice: The principle of fairness and equality among individuals

• Beneficence: The principle of acting with the best interests of 
others in mind

• Non-maleficence: The principle that “above all, do no harm,” as in 
the Hippocratic Oath 

• Respect for Autonomy: The principle that individuals should have 
the right to make their own choices

(All of these principles should, prima facie, be held and when in conflict 
should be given equal weight)

[L. R. Varshney, “Engineering for Problems of Excess,” in Proc. 2014 IEEE Int. Symp. Ethics in Engineering, Science, and Technology, May 2014.]
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An ethical framework from biomedicine [Beauchamp and Childress]

• Justice: The principle of fairness and equality among individuals 
[FAT]

• Beneficence: The principle of acting with the best interests of 
others in mind [AI for Good]

• Non-maleficence: The principle that “above all, do no harm,” as in 
the Hippocratic Oath [AI for Good / FAT]

• Respect for Autonomy: The principle that individuals should have 
the right to make their own choices

Human-interpretable machine learning may provide 
avenues for addressing these ethical challenges, especially 
autonomy
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[The New York Times, 27 Feb. 2013]

[San Jose Mercury News, 28 Feb. 2013]

[IEEE Spectrum, 31 May 2013]

[Wired, 1 Oct. 2013]



Engineering processes: Rube Goldberg Machines

[X. Ge, J. Xiong, and L. R. Varshney, “Computational Creativity for Valid Rube Goldberg Machines,” in Proceedings of the 
Ninth International Conference on Computational Creativity (ICCC), Salamanca, Spain, 25-29 June 2018.]



Sustainable building materials

[X. Ge, R. T. Goodwin, J. R. Gregory, R. E. Kirchain, J. Maria, and L. R. Varshney, “Accelerated Discovery of Sustainable 
Building Materials,” to appear in Proceedings of the AAAI Spring Symposium on Towards AI for Collaborative Open 
Science, Palo Alto, California, 25-27 March 2019.]



From automatic music theorist to compose

MUS-ROVER, a way to learn the principles of quality (laws of music theory)

Computational creativity algorithms for music composition 
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In creative composition, want to break rules with a consistent style
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Problem Solving
Moral Reasoning
Safety
Creativity
Transfer

Interpretable concept learning to enable augmented intelligence

Lav R. Varshney, University of Illinois at Urbana-Champaign

varshney@Illinois.edu @lrvarshney

51


