NANOSCALE NMR STUDIES OF TOPOLOGICAL INSULATORS,

CRYSTALLINE INSULATORS AND DIRAC SEMIMETALS

Louis Bouchard

UCLA

Mar. 22, 2019

TODAY'S TOPICS

Topological band structures

Topological Insulators

Topological Crystalline Insulators

Dirac Semimetals

Electrons In Crystals

Electrons are waves

Things happen when $e^{-} k = lattice spacing$

Electrons In Crystals: Things Happen When e⁻ k = Lattice Spacing

e⁻ like to be on top of atoms (lowers energy), but not in between (higher energy)

Band Theory of Solids

Macroscopic Solid: Add e⁻ Fills Bands

metal:

insulator: conducts electricity doesn't conduct electricity

Insulators: e⁻ move around but no net movement

2D Metal in Magnetic Field

$$\begin{bmatrix} \frac{(\mathbf{p} + e\mathbf{A})^2}{2m} \end{bmatrix} \Psi = E\Psi$$
$$\mathbf{A} = By\hat{\mathbf{x}}$$
$$\begin{bmatrix} \frac{(p_x + eBy)^2}{2m} + \frac{p_y^2}{2m} \end{bmatrix} \Psi = E\Psi$$
$$\Psi = e^{ik_x x} \chi(y)$$
$$\begin{bmatrix} \frac{p_y^2}{2m} - \frac{1}{2}m\omega_c^2(y + y_k)^2 \end{bmatrix} \chi(y) = E\chi(y)$$

Solutions are harmonic oscillators Localized in space, $v_{group} = 0$ Highly degenerate with discrete energies:

$$E = \left(n + \frac{1}{2}\right)\hbar\omega_c \qquad \omega_c = \frac{eB}{m}$$

"Landau levels"

Topology: 1D Edge States Conduct Current

Boundaries are perfect conductors - no resistance

TI & Topological Invariant

H.C. Manoharan, Nature Nanotechnology 5, 477-479 (2010)

TKNN: Topological Invariant for QHE

Are Landau levels the only system with TKNN v≠0?

2D TI: Quantum Spin Hall Effect - Experiments

QSHE thought to be ground state of graphene, but SOC too small in graphene

HgTe quantum wells predicted to show QSHE (Bernevig, Zhang 2006)

Perfect (dissipationless) 1D conducting channel

- 1D edge states
- Opposite spins travel in opposite dir.
- TRS
- Two copies of Haldane model
- Topological Z2 invariant: only 2 types of TRS 2D insulators

Koenig et al., Science 318, 766 (2007)

3D TIs: From Theory to Experiments

 $\overline{2}$

Prediction: Kane, Mele, Fu (PRL 2005, 2007), Bernevig et al. (Science 2006). Experimental observation: 2D: HgCdTe QWs (König 2007), 3D: $Bi_{1-x}Sb_x$ (Hsieh 2008), Bi_2Se_3 (Xia 2009)

Characterization Techniques:

ARPES, STM, transport, etc. mixed bulk & surface contributions

Goal: Probe *n*- and *p*-Type Materials, With Defects, up to RT

selectivity to bulk vs surface

non-ideal materials, defects

NMR reports on carrier concentration density of states, magnetic order, effective mass, etc. nanoscale resolution heterostructures, interfaces

TODAY'S TOPICS

Topological band structures

Topological Insulators

Topological Crystalline Insulators

Dirac Semimetals

TI BULK PROPERTIES As Probed by Conventional SS-NMR

Bulk Defects

Phase Separation

Electronic Homogeneity

Carrier conc. & Type, p-to-n Transition

Band Inversion

Adv. Electr. Mater. 1, 1500117 (2015); APL Materials 3, 083601 (2015); Phys. Rev. B 90, 125201 (2014); Adv. Func. Mater. 24, 1519-1528 (2014); J. Phys. Chem. C 117, 8959-8967 (2013); J. Phys. Chem. C 116, 17300-17305 (2013)

E-N Hyperfine Interaction

Orbital Hyperfine Interaction (TI)

$$H_O \sim \frac{\mathbf{I} \cdot (\mathbf{r} \times \mathbf{p})}{r^3} \quad H_O^{(TI)} \sim \frac{\mathbf{I} \cdot (\mathbf{r} \times v_F \boldsymbol{\sigma})}{r^3}$$

 $v_F \sim 5 \ 10^5$ m/s or ~0.7 eV vs 10^{-6} eV for usual HFI

(nucleus interacts with orbital motion of Dirac electron)

KORRINGA LAW IN Bi₂Te₃ First Time Observed in a TI

D. Koumoulis, et al., Phys. Rev. Lett. 110, 026602 (2013)

NEGATIVE KNIGHT SHIFT First Time Observed in a TI

Fig. 1. ¹²⁵Te NMR spectrum of Bi_2Te_3 single crystal at room temperature. The *c* axis of the crystal is directed along the external magnetic field.

Podorozhkin, et al., Phys. Solid State 57, 1741 (2015)

D. Koumoulis, et al., Phys. Rev. Lett. 110, 026602 (2013)

Nuclear Quadrupolar Central Transition

http://www.pnas.org/content/112/28/E3645/suppl/DCSupplemental

Isotopic Ratio & Korringa Law

magnetic relaxation mechanism

¹²¹Sb nuclei (*I*=5/2)

¹²³Sb nuclei (*I*=7/2)

electric relaxation mechanism

http://www.pnas.org/content/112/28/E3645/suppl/DCSupplemental

βNMR STUDIES @ ISAC-I Facility, TRIUMF

M1352: TI/OI Thin-Film Heterostructure

0.4 keV, 50% signal originates from TI surface, d=4 3 nm 1 keV, 80% originates from TI bulk

Knight Shift Measures Carrier Density, s-o Mixing, Density of States @ E_F

$$K = \frac{4\pi}{3} g. g^*. \mu_B^2. \langle |u_k(0)|^2 \rangle_{E_0} \rho(E_F) \qquad (\cos^2 \theta^+) \langle R | \Delta(\vec{r}) | R \rangle$$

M1352: Knight Shift, Hyperfine Constant, Local Carrier Concentration

D. Koumoulis, et al., PNAS 112, E3645-E3650 (2015)

Depth-Resolved Magnetic Properties

p effective number of Bohr magnetons C atomic fraction of paramagnetic atoms D temperature independent term g electron g-factor J effective s-d exchange integral

D. Koumoulis, et al., PNAS 112, E3645-E3650 (2015)

Nanoscale Findings From Depth Profiling

when going from the bulk to the surface, across a ~10 nm thick layer...

$$T_{c}^{surface} = 0.5 \cdot T_{c}^{bulk}$$
$$J^{surface} = 0.9 \cdot J^{bulk}$$
$$n_{e}^{surface} = 2 \cdot n_{e}^{bulk}$$
$$A_{hf}^{surface} = 2 \cdot A_{hf}^{bulk}$$

J: effective *s-d* exchange integral

D. Koumoulis, et al., PNAS 112, E3645-E3650 (2015)

TOPOLOGICAL CRYSTALLINE INSULATORS

TCIs Have Even Number Of Dirac Cones

crystalline symmetry replaces time-reversal symmetry

surface states protected by crystal mirror symmetry

only on crystal faces perpendicular to the mirror planes

L. Fu, Phys. Rev. Lett. 106, 106802 (2011); T.H. Hsieh, et al., Nature Comm. 3, 982 (2012).

ARPES of Pb_{1-x}Sn_xSe, x=10-40%

At room temperature (upper row), at ~180K (middle) and at 20K (lower row)

vs doping (x=0.1, 0.2, 0.3, 0.4)

vs T

<u>CD vs T, Pb_{1-x}Sn_xSe, x=20%</u>

Recall that

 $\frac{1}{T_1} \propto N_{s,p} (E_F)^2$

Spin Dynamics and BI

Ferroelectricity: Van Kranendon & Walker (1968) $\frac{1}{T_1} \propto T^2$ for $T \ge \Theta_D$ $\frac{1}{T_1} \propto T^7$ for $T \le \Theta_D$ $\Theta_D \sim 150$ K SnTe

 $1/T_1$ expected to change at $T_c \sim 100$ K (critical slowing of the soft mode)

Surface State like Conductive Metal

 $1/T_1$.T~0.98 -> highly conductive state (non-interacting carriers, no electronelectron correlations)

SnTe surface is more metallic than Ag or Au

Metallicity hard to detect via volume-averaged readouts

Field-Depending Korringa Process

Field dependence also observed in various quantum Hall systems.

Knight Shift @ Surface Reveal Gapless Semiconductor

 $K = B \cdot T^n + D$

 1/T^{3/2} law typical of gapless semiconductors (Tsidilkovski 1997, Zhang 2015)
 sub-linear power law (<1) due to presence of defects and disorder

Topological Dirac Semimetals

Evolution of non-trivial Fermi Surface Features in the Band Structures of $Pb_5Bi_6Se_{14}$ and $Pb_5Bi_{12}Se_{23}$

 $(PbSe)_5(Bi_2Se_3)_{3m}$

m=1 Pb₅Bi₆Se₁₄ semiconducting m=2 Pb₅Bi₁₂Se₂₃ semimetallic

SUMMARY

Topological States

TI bulk & surface States near RT, p-type materials, studies of materials with high defect content

TCIs slightly more complicated because of the band inversion vs T and x; no ferroelectric transition in SnTe

Contributors:

D. Koumoulis, J.P. Scheifers, R. Touzani, B.P.T. Fokwa, R.E. Taylor, K.L Wang, L. He, X. Kou, D. King, F. Alkan, C. Dybowski (U Del.), G.D. Morris (TRIUMF), G.A. Fiete (UT Austin), M.G. Kanatzidis (NWU), Thomas Chasapis (NWU), G. Springholz (Linz), R. Akiyama, S. Ishikawa, S. Kuroda (Univ. of Tsukuba)

For More Info See:

Adv. Electr. Mater. 1, 1500117 (2015); Proc. Natl. Acad. Sci. USA 112, E3645-E3650 (2015); APL Materials 3, 083601 (2015); Phys. Rev. B 90, 125201 (2014); Adv. Func. Mater. 24, 1519-1528 (2014); J. Phys. Chem. C 117, 8959-8967 (2013); Phys. Rev. Lett. 110, 026602 (2013); J. Phys. Chem. C 116, 17300-17305 (2013)

ACKNOWLEDGMENTS

