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Relevant extra-cellular matrix length-scales and 
stiffnesses span several orders of magnitude 
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Macroscopic 

stiffness 

depends on: 

 

• Materials 

• Illumination history 

• Microstructure 



Existing approaches to introducing artificial ECM 
structure are either 2-D or serial 

Burdick et al., Langmuir 20 5153 (2004) Marklein, Soft Matter 6 136 (2010) 

• 2-D 

• Microfluidic creation of stiffness gradients 

• Photopolymerization using transparency masks 
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Existing approaches to introducing artificial ECM 
structure are either 2-D or serial 

Bick et al., NE Bioeng. Conf. 2009 

Kloxin et al., Science 324 59 (2009) 

Chan et al., Lab Chip 10 2062 (2010) 
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50 μm 

• 3-D 

• Two-photon laser-scanning lithography 

• Layer-by-layer cell encapsulation using stereolithography 

• Layer-by-layer hydrogel microfluidic network construction 

• Dispenser printing 

• Attempts to parallelize using digital micromirror devices 

 

Han et al., Biomed Microdevices (2010) 



Basic idea: static diffractive optical elements, 
cheaply reproduced on polymeric substrates, map 

to 3D intensity pattern in polymer solution# 
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• If geometry is very simple, the diffractive pattern could be 
very basic 

• If more complex, we require a more general approach 

 

• Diagram must illustrate the concept of phase modulation by a 
structured transparent topography, stress the need to make it 
planar to avoid external optics and enable large-area 
patterning 

• define phase levels 
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3D Holographic Lithography: static 2D diffractive 
pattern on a substrate directs 3D photopatterning 

Diffractive optical 

element(s) (DOEs) 

on base of device 

Polymer solution 

Plane wave illumination 

Surface relief 

perturbs phase of 

transmitted light 

and causes 

interference 

inside device 

Photocrosslinked 

microstructures 
Microfluidic device 

• Minimal external optics 

• Microstructures could be created on demand in a few seconds 

• Adds little to cost of device 

• Potential for large-area patterning 



Can a diffractive element be designed to pattern  
any given 3D structure in one step?  

3-D Gerchberg Saxton algorithm? 

 

 

 

Whyte New J Phys  7 117 (2005) 

Instead: independent 

holographic ‘tiles’ map 

to different axial slices 

of the target volume 

 

 

 



Hologram and lens are superimposed: focused 
image size depends on pixel size and focal length 
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The Gerchberg-Saxton algorithm iteratively extracts 
hologram phase from a target amplitude 
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