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Outline

• Brief intro to quantum mechanics

• Overview of quantum information theory

• Some results on feedback channels

2



Shannon’s theorem (1948)

The entropy of a random variable X is

H(X) =
∑
i

−pi log pi .

Channel Coding
A noisy channel N : X → Y has capacity

max
p(X)

I(X;Y ),

where

I(X;Y ) = H(Y )−H(Y |X)

[H(output)−H(output given input)]

= H(X) +H(Y )−H(X,Y )

[(output) +H(input)−H(joint distribution)]
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How Do We Prove Shannon’s Theorem?

• Use a random codebook.

• Show that we can (theoretically) decode it

Shannon’s construction was not practical, since it takes expo-

nentially long to decode.
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John Pierce, 1973

I think that I have never met a physicist who understood infor-

mation theory. I wish that physicists would stop talking about

reformulating information theory and would give us a general

expression for the capacity of a channel with quantum effects

taken into account rather than a number of special cases.
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Quantum Mechanics: The Superposition Principle:

If a quantum system can be in one of two mutually distinguish-

able states |A〉 and |B〉, it can be both these states at once.

Namely, it can be in the superposition of states

α |A〉+ β |B〉

where α and β are both complex numbers and |α|2 + |β|2 = 1.

If you look at the system, the chance of seeing it in state A is

|α|2 and in state B is |β|2.

The state of a quantum system is a unit vector in a complex

vector space.
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We call a two-dimensional quantum system a qubit.

Example: If you have a polarized photon, there can only be two

distinguishable states, for example, vertical | l〉 and horizontal

|↔〉 polarizations.

All other states can be made from these two.

| ↗↙ 〉 =
1√
2
|↔〉+

1√
2
| l 〉

| ↘↖ 〉 =
1√
2
|↔〉 −

1√
2
| l 〉

∣∣∣ /⊃〉 =
1√
2
|↔〉 −

i√
2
| l 〉
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Quantum Mechanics: Joint Systems:
If you have two qubits, their joint state space is the tensor prod-

uct of their individual state spaces (e.g., C4).

Two qubits can be in any superposition of the four states

| l l 〉 | l↔ 〉 |↔l 〉 |↔↔〉

This includes states such as an EPR pair of photons,

1√
2

(| l↔ 〉 − |↔l 〉) =
1√
2

(| ↗↙ ↘↖ 〉 − | ↘↖ ↗↙ 〉),

where neither qubit alone has a definite state. These are called

entangled states.
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Quantum Mechanics: Joint Systems:
If you have n qubits, their joint state is described by a 2n di-

mensional vector. We now label basis vectors for each qubit by

|0〉 and |1〉.

The basis states of this vector space are:

|000 . . .00〉 |000 . . .01〉 · · · |111 . . .11〉

This high dimensional tensor product space is where quantum

information theory (as well as quantum computation) lives.
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Density Matrices

In quantum mechanics, the fundamental objects are often taken
to be pure quantum states (unit vectors in Cn).

These are analogous to deterministic objects in classical systems.

For quantum information theory, we need to work with proba-
bilistic ensembles of quantum states. These are represented by
density matrices.

Density matrix ρ:
Hermitian trace 1 positive semi-definite matrix over Cn × Cn.

A rank one density matrix corresponds to a pure state (i.e.,
vector in Cn).
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Density Matrices

Suppose a quantum system is in state vi with probability pi.

The density matrix is

ρ =
∑
i

piviv
†
i

The density matrix ρ gives as much information as possible about

the outcomes of experiments performed on the system.

ρ is trace 1, positive semi-definite.

Two systems with the same density matrix ρ are experimentally

indistinguisable.
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Density Matrices II

Suppose you have a joint quantum system on Ca⊗Cb in the state

ρAB. If you can only do experiments on the second part of the

system, it is effectively in the state

ρB = TrA ρAB

Here, TrA is the partial trace over the first quantum space. If

we have a tensor product state ρA ⊗ ρB, then

TrA (ρA ⊗ ρB) = (TrρA)ρB,

and we extend this linearly to define the partial trace on entan-

gled states.
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Entropy of quantum states

Classical Case

Given n photons, each in state | l〉 or |↔〉, with probability 1
2. Any

two of these states are completely distinguishable. The entropy

is n bits.

Quantum Case

Given n photons, each in state | l〉 or | ↗↙ 〉, with probability 1
2.

If the angle between the polarizations is small, any two of these

states are barely distinguishable. Intuitively, the entropy should

be much less than n bits.
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Entropy of density matrices

By thermodynamic arguments, von Neumann deduced the en-

tropy of a quantum system with density matrix ρ as the Shannon

entropy of the eigenvalues λi of ρ:

HvN(ρ) = HShan(λi).

Equivalently,

HvN(ρ) = −Tr(ρ log ρ) .

(Recall
∑
i λi = Trρ = 1.)
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Von Neumann Measurements

Suppose you have a quantum state space Cn. A von Neumann

measurement corresponds to a complete set of orthogonal sub-

spaces S1, S2, . . . Sk. (Complete means the Si span Cn.)

Let ΠSi be the projection onto the i’th subspace Si.

The corresponding von Neumann measurement operating on the

density matrix ρ ∈ Cn × Cn takes ρ to ΠSi ρΠSi with probability

Tr( ΠSi ρ).

The simplest situation is if each of the Si is one-dimensional,

and then Si = viv
†
i , where the vi form a basis of Cn.
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Quantum Shannon’s Theorem: Holevo Bound χ

Suppose we have a source emitting ρi with probability pi.

χ = HvN(
∑
i

piρi)−
∑
i

piHvN(ρi)

How much information Iacc (accessible information) can we learn

about the sequence {i}? Theorem (Holevo, 1973)

Iacc ≤ χ

If all the ρi commute, the situation is essentially classical, and

we get Iacc = χ. Otherwise Iacc < χ.
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Theorem (Holevo, Schumacher-Westmoreland, 1996)

The classical-information capacity obtainable using codewords

composed of signal states ρi, where ρi has marginal probability

pi, is

χ({ρi}; {pi}) = HvN(
∑
i

piρi)−
∑
i

piHvN(ρi)

(The entropy of the average output less the average entropy of

the output.)

This can be larger than the accessible information.
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Quantum Channels

So far what we’ve dealt with is a sender able to send one out of

some set of quantum states.

To ask for the quantum analog of Shannon’s theorem, we need

to talk about quantum channels.

Input: quantum state −→ output: quantum state.

Quantum mechanics says that a memoryless quantum channel

is a trace-preserving completely positive operator.

If you input a state entangled across two channel inputs, you get

an output possibly entangled across two channel outputs.
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Capacity of Quantum Channels

Does the HSW theorem give the capacity of a quantum channel

N?

Possible capacity formula: Maximize χ({N (ρi)}; {pi}) over all

output states N (ρ) of the channel.

This is called χ(N ).
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Unentangled Inputs, Joint Measurements

HSW Capacity: Maximize over probability distributions on inputs

to the channel ρi, pi:

χ({N (ρi)}; {pi})
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Entangled Inputs, Joint Measurements

Capacity: Maximize over probability distributions on inputs to

the channel ρi, pi where ρi is in the tensor product space of n

inputs:

lim
n→∞

1

n
χ({N⊗n(ρi)}; {pi})

Can be larger.
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Measurement of Entanglement

Suppose we have a pure state on systems A and B: |ψ〉AB.

Its entropy of entanglement is

S(TrA |ψ〉AB) = S(TrB |ψ〉AB).

E.g., the state

1√
2

(|01〉 − |10〉)

has one bit of entanglement.

An n-qubit state is said to be maximally entangled if it has n

bits of entanglement.
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Monogamy of Entanglement

If an n-qubit system A has n bits of entanglement with another

system B, then A can’t be entangled with anything but B.

And in general, the more an n-qubit system is entangled with

one system, the less it can be entangled with any other system.
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Teleportation:

Using an EPR pair of qubits — a maximally entangled pair of

qubits — one qubit can be teleported by sending two classical

bits.

The sender makes a measurement on the joint state of the unknown qubit and

her half of the EPR pair, and the receiver applies to his half of the EPR pair

a unitary transformation which depends on the result of the measurement.
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Superdense Coding:
Using an EPR pair of qubits, two classical bits can be encoded

in one quantum bit.

This is a converse process to teleportation. Now the sender

applies the transformation and the receiver makes the measure-

ment.
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What does this mean for channel capacity?

Holevo’s bound says that a noiseless qubit channel can send at

most one bit per signal.

If the sender and the receiver share entangled pairs of qubits, a

noiseless qubit channel can send two bits per signal.

There is an entanglement-assisted capacity of a quantum chan-

nel, and it is larger than the classical capacity of a quantum

channel.
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Generalizations of Shannon’s Formula: entanglement-
assisted capacity

Essentially: CE is the entropy of the input plus the entropy of

the output less their joint entropy.

For classical channels, this is the same as the other formula for

capacity. For quantum channels, they are different.

The above formulation isn’t technically right. There’s no such

thing as a joint entropy since the input and the output of a

quantum channel can never simultaneously exist. We can fix

this detail.
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Formula for entanglement-assisted capacity

Essentially: CE is the Entropy of the input plus the entropy of

the output less their joint entropy.

The above formulation isn’t quite right.

We get around this by using an entangled state as input. The

sender keeps half of it, and sends the other half through the chan-

nel. Now, we can define an input entropy (entropy of sender’s

half of the entangled state), an output entropy (entropy of re-

ceiver’s state), and a joint entropy.

CE is additive.
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Quantum Capacity:

We can also ask for the quantum capacity of a channel.

Suppose we have a channel. Then if the quantum capacity is

Q, we can use n uses of the channel to send Qn − o(n) qubits

from the sender to the receiver, and have the receiver decode

the output and obtain a quantum state that is nearly the same

as the sender encoded.
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Quantum Capacity:

Like entanglement-assisted capacity, you assume the sender in-

puts an entangled state.

The quantum capacity is essentially the maximum of the entropy

of the received state less the entropy of the joint state.

For classical channels (and many quantum channels, that aren’t

quantum enough), this is 0.
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Entanglement-Assisted Quantum Capacity:

Superdense coding and teleportation shows that if the sender

and receiver share entanglement, sending two classical bits is

quivalent to sending one quantum bit.

Thus, QE = 1
2CE.
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Feedback for Classical Channels

Feedback: the receiver can send information to the sender.

Theorem: Feedback cannot increase the capacity of a memory-

less classical channel.
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Feedback for Quantum Channels

Feedback can increase the quantum capacity of the erasure chan-

nel.

Erasure channel: with probability p, receiver is told the signal is

erased, and with probability 1− p, he gets the input.

Without feedback, a quantum erasure channel with error proba-

bility ≥ 1
2 cannot send quantum information.

We use the quantum no-cloning theorem to prove this.

Theorem: you cannot duplicate the state of an unknown qubit.
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Feedback for Quantum Channels

Suppose we could encode quantum information in a channel with
erasure probability ≥ 1

2.

Consider the channel that with probability 1
2, gives the input to

receiver 1 and an erasure state to receiver 2. And with probability
1
2, does the opposite.

This looks like an erasure channel with probability 1
2 to each of

the two receivers.

Thus, if we could send quantum information over a channel with
erasure probability p = 1

2, both receivers would be able to decode
it, and you would have cloned the message qubits, a contradic-
tion.

34



Capacity of Qubit Erasure Channel with Feedback

Formula for quantum capacity gives C = 1− 2p.

But with feedback, sender and re-

ceiver can share an entangled state

with one channel use, and send two

classical bits with two more channel

uses. This protocol gives

C =
1

3
(1− p) .
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Capacity of Erasure Channel with Feedback

You can combine this with superdense

coding and other tricks to do better.

While we don’t have an exact formula

for the capacity, it is between the two

red lines on the graph.

(D. Leung, J. Lim, P. Shor, 2007)
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Can Feedback Increase Classical Capacity?

Yes, it can.

Retrocorrectible channels. (Bennett et al ????)

Rather contrived-looking channel with two registers.

37



Can Feedback Increase Classical Capacity?

The channel takes input |φ〉 and

|ψ〉, measures |φ〉 in a random

basis B, gets the result M , and

gives the receiver B and UM |ψ〉
Protocol: the sender puts half

an entangled state in register 1,

the receiver sends her the basis

B, and she measures the other

half of the entangled state in ba-

sis B to find M .
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How about simple channels?

For example, can feedback increase the classical capacity of the

noiseless qubit channel?

Until recently, this was unknown. (Although it’s not clear how

many people realized it was an open problem.)

It cannot.
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How about simple channels?

For example, can feedback increase the classical capacity of the

noiseless qubit channel?

Until recently, this was unknown. (Although it’s not clear how

many people realized it was an open problem.)

M (message) : S (sender) −→ R (receiver)

Proof: We show that the quantity

I(M,R) + entanglement(S,R)

cannot increase by more than 1 for each channel transmission.

So after n transmissions I(M,R) ≤ n, showing that C ≤ n.
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Simple Channels and Feedback (continued)

In fact, with a little more work the proof shows that the capacity

with feedback cannot be larger than the maximum entropy of the

output.

This shows feedback cannot increase the capacity of the:

• noiseless quantum channel,

• noiseless bosonic channel,

• quantum erasure channel.
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Open Questions:

How general is the phenomenon that feedback increases classical

capacity of quantum channels?

For example, does feedback increase the capacity of the noisy

bosonic channel?

How general is the phenomenon that entangled inputs increase

the classical capacity of quantum channels?

For example, does this happen for the depolarizing channel?
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