High-Speed Quantum Photonics with Plasmonic Metamaterials

Vladimir M. Shalaev

with S. Bogdanov, O. Makarova, Z. Kudyshev, A. Lagutchev, A. Kildishev and A. Boltasseva Purdue Quantum Science and Engineering Institute

N-

Qubit implementations

Promises of quantum photonic technologies

- Speed of light!
- Exceptionally immune to decoherence

Sparrow et al. Nature (2018)

Satellite-mediated QKD, WCS 1-10 kbps, QBER 1%; trusted satellite. Liao et al. PRL (

Ground-to-satellite quantum teleportation **8 Hz**, Fidelity 80%. Ren et al. *Nature* (20

Satellite-based entanglement distribution **1 Hz**, Fidelity 87%. Yin et al. *Science* (2)

FAST YET SLOW!

3

OUTLINE: Plasmonics Metamaterials Meet Quantum

Plasmonics for ultrafast modulators

^{of}Engineering

College

PURDUE

C. Haffner, et al., *Nature* (2018) (with ETH)

Single photons at high rate

Bogdanov et al., Science (2019); Nano Lett. (2018)

Deterministic assembly

S. Bogdanov et al, arxiv (2019)

Plasmonics for single-shot optical spin read-out

S. Bogdanov et al, arxiv (2019); in preparation

Machine Learning for Quantum Photonics

Z. Kudyshev et al, in preparation (2019)

PLASMONICS FOR ULTRAFAST MODULATOR

See poster by Soham Saha

Ultrafast low-loss plasmon-assisted electro-optic modulator

Si waveguide mode couple SURFACE PLASMON when LOSS is ON! COMPACT (footprint of a few square micrometres) HIGH SPEED (~THz) and LOW LOSS (< 3 dB); 12 fJ/bit Efficient modulation: 10dB extinction ratio

In collaboration with ETH: J. Leuthold, UW: L. Dalton and VCU: N. Kinsey

C. Haffner, et al., Nature (2018)

Light-matter coupling in photonics & plasmonics

Purcell Factor ~ $\left(\frac{\lambda_0}{n}\right)^3 \frac{Q}{V}$

- $\lambda_0 =$ wavelength in vacuum
- n = refractive index
- Q = optical mode quality factor
- V = optical mode volume

$$k_{\rm rad} = k_{\rm rad}^{\rm vac} \times \text{Purcell Factor}$$

Plasmonic Metamaterials Meet Quantum:

Overcoming Quantum Decoherence with Plasmoncs S. Bogdanov, A. Boltasseva, VMS, Science (2019)

Outpacing Quantum Decoherence with Plasmonics

Record-bright RT single-photon source: NV in plasmonic cavity

Ag

Bogdanov et al., *Nano Lett.* (2018) see also Opt. Phot. News 29, 46 (2018)

nanodiamond

PAHIPSSIPAH

ÞÖ

NV

Gap-pasmon + Nanoanteni

Single-photon emission at record-high rates: NV center in nano-patch antenna (NPA)

SEM 1x1 µm of Ag substrate

College

Nanodiamonds randomly dispersed on silver substrate

Nanocubes randomly dispersed over nanodiamonds

photon emission rate into far field ~ 0.5 GHz

See also works by M. Mikkelsen, S. Strauf, J. Baumberg B. Hecht, V. Sandoghdar, N. van Hulst and others

Bogdanov et al., Nano Lett. (2018)

)

PURDUE

Deterministic Assembly of NPAs for SPS

g

lass

Purdue

College

of Engineering

(see poster by Oksana Makarova)

epi-A

See related work by O. Benson, S. Bozhevol U. Andersen and others

Bogdanov et al., arxiv (2019)

Deposition and nudging of the nanocubes

Bogdanov et al., arxiv (2019)

Single-photon nanoantenna characterization

PURDUE UNIVERSITY College of Engineering

Deterministic assembly of a single-photon nanoantenna

Optical characterization

Realizing the optimal antenna configuration

Optimal enhancement with diamond under cube corner

Characterizing optimal single-photon nanoantennas

 PURDUE
 College

 of Engineering

Indistinguishable photons in GeVs?

Nitrogen-vacancy center in diamond

College

^{of}Engineering

Purdue

See also works by M. Lukin, R. Walsworth, D. Awschalom, D. Budker, C. Becher, F. Jelezko, K. Fang, P. Hemmer, a

Single-shot optical spin readout

Outpacing quantum decoherence with plasmonics

- 30 Mcps brightest RT single-photon source
- 0.5 GHz emission rate into far field at RT
- x3,500 plasmonc speed-up (23ps emission)

S. Bogdanov, A. Boltasseva, VMS, Science (2019)

Machine learning for quantum photonics

Neural network trained on 15 emitters' 1s data sets

College

^{of}Engineering

PURDUE

PURDUE ^{of}Engineering

High-speed room-temperature platform for quantum information

Interaction between qubits strongly enhanced by nanophotonics results in high speed quantum dynamics immune to loss and decoherence at RT

High-Speed Quantum Photonics with Plasmonic Metamaterials

Plasmonics for ultrafast modulators

College

PURDUE

C. Haffner, et al., *Nature* (2018) (with ETH)

Single photons at high rate

Bogdanov et al., Science (2019); Nano Lett. (2018)

Deterministic assembly

S. Bogdanov et al, arxiv (2019)

Plasmonics for single-shot optical spin read-out

S. Bogdanov et al, arxiv (2019); in preparation

Machine Learning for Quantum Photonics

Z. Kudyshev et al, in preparation (2019)

TEAM

TEAM AND SUPPORT

Students

Aveek Dutta
Sajid Choudhury
Krishnakali Chaudhuri
Harsha Reddy
Deesha Shah
Soham Saha
Clayton DeVault
D. Wang

Collaborations

Prof. A. Boltasseva (Purdue)
Prof. Y. Gogotsi (Drexel)
Prof. A. Calzolari (CNR)
Prof. I. Bondarev (NC Central)
Prof. A. Kildishev (Purdue)
Prof. Ferrera (Heriot-Watt)
Prof. N. Engheta (UPenn)
Prof. A. Alu (UTexas Austin)
Profs. R. Merlin & A. Grbic (UM)
Prof. M. Brongersma (Stanford)
Prof. D. Faccio (Glasgow)
Prof. J. Leuthold (ETH)

Postdocs

- Dr. Z. Kudyshev
- Dr. Simeon Bogdanov

Former members

- ° Prof. G. Naik (Rice)
- Prof. N. Kinsey (VCU)
- Dr. S. Ishii (NIMS)
- ° Prof. N. Emani (IIT Hyderabad)
- ° Dr. P. West (Intel)
- Dr. J. Kim (UMaryland)
- °Dr. A. Shaltout (Stanford)
- °Prof. Ndukaife (Vanderbilt)
- °Prof. X. Ni (PennState)

Support

- DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (DE-SC0017717)
- Air Force Office of Scientific Research (FA9550-14-1-0138, MURI FA9550-14-1-0389)
- Army Research Office (57981-PH, 56154-PH-MUR, 63133-PH)
- ° Office of Naval Research (ONR-MURI N00014-10-1-0942, N00014-16-1-3003)
- National Science Foundation (NSF DMR-1506775)