Online simulations via nanoHUB: Binding and electronic structure of Si

In this tutorial:

• Use density functional theory calculations to explore:

- How the electronic structure of Si develops
- Understand binding in the Si crystal

David Guzman, Sam Reeve, and Ale Strachan

strachan@purdue.edu School of Materials Engineering & Birck Nanotechnology Center Purdue University West Lafayette, Indiana USA

Launch the **DFTMatProp** tool in nanoHUB

From your *My HUB* page launch DFT calculations with Quantum Espresso

းရေးတို့	noHUB		 From All Tools find: DFT material 	
	David M Guzr Public Profile :: Your profile is current	man htly public.	Launch tool by clicking on:	latar
	MY TOOLS ×	RESOURCES	Constant of the second se	
±	dft material	Learning Modules Teaching Materials		Ē
 ★2 ▲ 	DFT Material Properties Simulator Properties Simulator	 Online Seminars Animations Workshops Downloads 	$\begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
⊥ € 2			Advanced Options: • • • • Simulate >	

Electronic structure and binding in Si

- DFT calculations using the DFTMatProp tool in nanoHUB
- Explain the formation of the band structure in Si starting from the simple electronic structure of a Si atom

DFT Material Properties Simula	itor	*	🕻 🗙 Terminate	🍽 Keep for later				
🛈 Input 🔸 🙆 Simulate								
Basic Input] Geometric Input] Energy Expression] Band Structure/DOS] Dielectric] Task: E-K Diagrams								
		All of the second secon	$M(c) = \left(\frac{L_{2}}{2r}\right)^{d-1} \int_{\mathcal{M}} \sum_{i=1}^{d} \sum_{j=1}^{d} \sum_{j=1}^{d} \sum_{j=1}^{d} \sum_{i=1}^{d} \sum_{j=1}^{d} \sum_{j=1}^{d} \sum_{i=1}^{d} \sum_{j=1}^{d} \sum$					
Material Type: Semiconductor Semiconductors: Si(Diamond)				•				
Advanced Options: 🕒 📄 yes								
				Simulate >				

Step 1: Basic Input

- select "E-K Diagram" from task menu
- then "Semiconductor" from material type
- followed by "Si(Diamond)" in semiconductors.
- Finally switch to "yes" the advanced options

Electronic structure of Si perfect crystal

DFT Material Properties Simulator & Terminate Keep for later	Run the default E-k
Basic Input Task: E-K Diagrams	
	(select semiconductor
	and Si)
	Reciprocal space
	a*
Material Type: Semiconductor	A CONTRACT OF THE OWNER OWNER OF THE OWNER OF THE OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER
Semiconductors: Si(Diamond)	
Advanced Options: • • • Simulate >	
and structure will be shown along the following path (tat	

Band structure will be shown along the following path (tat contains the valence band maxima and conduction band minima)

$$K_{path} = L - \Gamma - X - \Gamma$$

Explore the electronic band structure of Si

Assignment

- Identify the valence band maximum and conduction band minima
- Is Si direct or indirect band gap semiconductor?
- (Note that DFT tends to underestimate band gaps)

Electronic structure of an isolated Si atom

Analyze the band structure of the 2 isolated silicon atoms

NOTICE: No dispersion, i.e. no k-dependence

- Non-interacting atoms
- k determines how WF varies from unit cell to unit cell does not affect the energy as atoms are far way

Now let us look at the electronic properties of silicon molecule. In the following we will start with a guess for the separation between Si atoms, compute the GGA predicted bonding distance, and compute the electronic structure of such system. To get started launch a new DFTMAtProp window.

Step 1: Basic Input

- select "E-K Diagram" from task menu
- then "Semiconductor" from material type
- followed by "Si(Diamond)" in semiconductors.
- Finally switch to "yes" the advanced options

Step 2: Geometric input

Change the atomic structure and cell vectors fields as follows:

Basic Input Geometric Input Energy Expression					
	Atomic Structure:	si 0.4 0.5 0.5 si 0.6 0.5 0.5			
	Cell Vectors (A):				
		0.00 0.00 15.0			
Equation of State Calculations: 🔵 📰 🔄 no					

Si₂ molecule:

To model a molecule in a code that implements DFT based on plane waves and periodic boundaries, we need to increase the size of the simulation box to avoid interactions with adjacent images

The molecule is located in the middle of the simulation box and the atoms are initially separated by 3Å

DET Material Proportion Simulator (10	12 mm	😽 🗙 Terminete		
DET Material Properties Simulator (10	no piny		Keep for later	
Input → ¹ Simulate			=	Stop 2: Eporgy Expression
Basic Input Geometric Input Energy	Expression Band Structure/DOS Dielectric			Step 5. Lifergy Expression
Exchange and Correlation functional:	GGA			Change the Relax field to "Force
Relax:	Force Relax			Relax"
elaxation Options	No Force Relax			
onic Dynamics: BFGS quasi-newton	Cell Relax			
Cell Dynamics: BFGS quasi-newton			8	Change Number of K-Points to
I umber of K-Points				(1 1 1) (1 1 1)
K direction: 2			+ -	
/ direction: 2			+ -	
Z direction: Z			+ -	Leave the defaults for the rest of
lumber of K-Points (for Non-Self Consiste	nt Field Calculation)			Leave the defaults for the rest of
X direction: 25			+ -	the field.
Y direction: 25			+ -	
Z direction: 25			+ -	
Wavefunction Kinetic Energy cutoff (Ry):	25.0			
Charge Density Kinetic Energy cutoff (Ry):	100.0			
SCF Convergence Criterion (Ry):	1E-6			
			Simulate >	

Step 4: CLICK SIMULATE

DFT Material Properties Simulator (9:41 pm)	🗱 🗙 Terminate	r Keep for later	
1 Input + 🖉 Simulate		Ξ	
Result: SCF Output		<u> </u>	
<pre>entering subroutine stress total stress (Ry/bohr**3) (kbar) P= -0.05 -0.0000037 0.00000000 0.0000000 -0.05 0.00 0.00000000 0.00000000 -0.00000035 0.00 -0.05 0.00 0.00000000 0.00000000 -0.00000035 0.00 0.00 -0.05 bfgs converged in 7 scf cycles and 6 bfgs steps (criteria: energy < 1.0E-04, force < 1.0E-03) End of BF0S Geometry Optimization Final energy = -15.3045516498 Ry ATOMIC_POSITIONS (crystal) Si 0.425767811 0.50000000 0.500000000 Si 0.574232189 0.50000000 0.500000000 End final coordinates</pre>			What is the final separation between silicon atoms?
Writing output data file qe.save init_run : 7.68s CPU 8.04s WALL (1 calls) electrons : 356.84s CPU 359.08s WALL (7 calls) update_pot : 3.29s CPU 3.74s WALL (6 calls) forces : 3.28s CPU 3.34s WALL (7 calls) stress : 25.14s CPU 30.77s WALL (7 calls)		Ţ	
		Select All	
< Input		Clear	

From single atom and molecule to crystal

<section-header>

- To better understand the band structure of Si we will perform a series of simulations with varying lattice parameters
- From a large lattice parameter with isolated atoms to the equilibrium lattice parameter of the crystal

Electronic structure vs. lattice parameter

Geometric input

Switch the EOS calculation to YES and change minimum volume to 1, maximum volume to 20, and steps to 20

Remember to set the lattice parameters back to the original value or re-start the tool

DFT Material Properties Simulator	\$	X Terminate	Keep for later
Input 🔸 🕲 Simulate			Ξ
Basic Input Geometric Input Energy Expression Band Structure/DOS	Dielectric		
Atomic Structure: Si 0 0 0	•		
51 . 25 . 25			
Cell Vectors (A): 0.000 2.672 2.672 2.672 0.000 2.672 2.672 0.000 2.672			
Equation of State Calculations:			
Equation of State Options			
Minimum Volume: 1			
Maximum Volume: 20			
Steps: 20			+ -
dvanced Options: 🔍 🗾 🖿 yes			
		:	Simulate >

Electronic structure vs. lattice parameter

The simulation will take several minutes since it will run 20 different calculations at different unit cell volumes.

Large lattice parameter (V~6.5V₀) weak interactions

- s and p bands start to overlap in energy
- s/p splitting similar to bonding/antibonding splitting
- No gap

A band gap opens up

Inverse separation between Si atoms

By-product: equation of state

- The energy-volume relationship obtained is called equation of state
- From it, we can obtain the equilibrium volume (minimum energy) and bulk modulus of the system (at T=0K in this case)

15 points form $0.8V_0$ to $2V_0$

Additional Questions

- Consider the Si₂ molecule. For each energy level in the band diagram plot, indicate its multiplicity (how many states have the same energy) and their electron occupation indicating electrons and their spin with arrows.
- At what lattice parameter does a band gap separating occupied and unoccupied states form?
- Think about the development of the band structure in terms of the s and p picture in the figure below

Additional notes: the diamond structure

Silicon crystalizes in the cubic Fd-3m space group every Si atom is bonded to four equivalent Si atoms forming corner-sharing tetrahedra Conventional cell

 $\vec{a} = a_0(1, 0, 0)$ $\vec{b} = a_0(0, 1, 0)$ $\vec{c} = a_0(0, 0, 1)$ $Si_1: 0.00, 0.00, 0.00$ $Si_2: 0.25, 0.75 0.75$ $Si_3: 0.50, 0.00 0.50$ $Si_4: 0.00, 0.50 0.50$ $Si_5: 0.50, 0.50 0.00$ $Si_6: 0.75, 0.25 0.75$ $Si_7: 0.75, 0.75 0.25$ $Si_8: 0.25, 0.25 0.25$

Primitive cell

 $\vec{a} = a_0(0, \frac{1}{2}, \frac{1}{2})$ $\vec{b} = a_0(\frac{1}{2}, 0, \frac{1}{2})$ $\vec{c} = a_0(\frac{1}{2}, \frac{1}{2}, 0)$

 $Si_1: 0.00, 0.00, 0.00$ $Si_2: 0.25, 0.25, 0.25$

Additional notes: exchange and correlation

Energy Expression You may explore the same results with LDA – by changing the XC functional

DFT Material Properties Simulator	*	× Terminate	Keep for later					
Olnput → ② Simulate								
Basic Input Geometric Input Energy Expression Band Structure/DOS Dielectric								
Exchange and Correlation functional: GGA]					
Relax: No								
Number of K-Point,								
Mairection: 8			+ -					
Y direction: 8			+ -					
Z direction: 8			+ -					
Number of K-Points (for Non-Self Consistent Field Calculation)								
X direction: 25			+ -					
Y direction: 25			+-					
Z direction: 25			+-					
wavefunction Kinetic Energy cutoff (Ry):								
Charge Density Kinetic Energy cutoff (Ry): 100.0								
SCF Convergence Criterion (Ry): 1E-6								
SCF maximum steps: 100			+ -					
Enable occupation options: 🔍 🗐 🖿 yes								
Occupations Options								
Occupation: smearing			.					
			Simulate >					
Storage (manage) 48% of 10GB		*	C 50 × 650					

Additional notes: reciprocal space

Band Structure/DOS Leave the defaults in all fields.

DFT Material Properties Simulator	🗱 🗙 Terminate	r Keep for later
🛈 Input 🔸 🙆 Simulate		≡
Basic Input Geometric Input Energy Expression Band Structure/DOS Dielectric Band Structure Calculations: yes Band Structure Options Path: S S		•-
Density of States Options: • yes		
minimum Energy (eV): -6		
maximum Energy (eV):		
energy grid step (eV): 06		
Advanced Options:		Simulate >
Storage (manage) 48% of 10GB	*	C 50 × 650

We selected a short K-path to plot the electron band dispersion which contains the valence band maxima and conduction band minima of Si diamond electronic structure

 $K_{path} = L - \Gamma - X - \Gamma$

