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Atomically-thin, 2D Materials

NIR: communications, MIR: thermal infrared, FIR: astronomy, Aircraft communication
night vision goggles military medicine AM radio
/ [
Document security, Display, /" Microwave oven, satellite communications,
DVD players solid-state lighting f radar, cell phone, Bluetooth, etc
/ / f
/ /
A A 2 > . : A 3 e
Frequency d 2 L
10" 10" 10" 10" 10" 10" 10" 10" 10” 10® 107 10° 10°
(PHz) (THz) (GHz) (MHz)

Ultraviolet rays Visible light Infrared rays Microwaves Radiowaves

Nmeeae. i o
hBN MosS, Black phosphorus Graphene
(insulator) (semiconductor) (semiconductor) (semimetal)

hBN: ~6 eV
3 % S g s
? X 3 3
B 07 & 3
¥ 93 7 =
g 2 8 g Nature
-43 > Photonics
3 \  A—T
=67 Monolayer[hBN -6 1 Monglayer MoS, 6~ Mo‘nt’)lpyerBP / -6 { Aonolgyer gr. 8, 899
: “EE M- - (2014). 3
r K M r r K M r X S r K M r :



Architecturing 2D Materials
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Architecturing 2D Materials

S. Nam et al., 2D Materials, 2017, 4, 022002.
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I Controlled Out of Plane Deformation

Wang & Kang U.S. Patent 9,908,285 (2018); Wang & Nam, Nano Letters (2015); Kang & Nam, Advanced Materials (2016).



3D Structures by Controlled Shrinkage

Overall process of large-area, conformal transfer

Detailed phenomena during shrinking/conformal adaptation process
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Choi Choi & Nam, Nano Letters 15, 4525 (2015).



I 3D Structures by Controlled Shrinkage
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I 3D Structures by Controlled Shrinkage
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Choi & Nam, Nano Letters 15, 4525 (2015).




I Crumpling of Hybrid OD-2D Materials

rumpled graphene-Au
SERS substrate

» Au nanoparticles integrated on crumpled 3D graphene could serve as optical
signal enhancer as well as light-triggered delivery of biomolecules
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Leem Leem & Nam, Nano Letters 15, 7684 (2015).



Crumpling of Hybrid OD-2D Materials

Leem

As shrinkage increases, hybrid graphene-Au 3D structures are formed

3D hybrid graphene-Au structures exhibit a microscale crumpled topography
and nanoscopic integrated Au antennae

The structure is fully adaptive to complex microscopic 3D surfaces by the
shrinkage process

11
Leem & Nam, Nano Letters 15, 7684 (2015).
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Topography vs. Surface Energy
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Topography vs. Surface Energy
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Topography vs. Plasmons

Spatially confined
resonant plasmons
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« Crumpling graphene enables the enhanced plasmonic resonance in the
near/mid infrared wavelengths (1-10 um) which is difficult to achieve with the
lithographically patterned graphene nanostructures (e.g. graphene ribbons,
disks, rings, and stacks).

» Stretching/releasing of crumpled graphene enables new possibilities of
reconfigurable graphene plasmonics (meta-materials).

14
Kang Kang & Nam, Light 7, 17 (2018).



Topography vs. Plasmons
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Topography vs. Plasmons
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Topography vs. Plasmons
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Kang Kang & Nam, Light 7, 17 (2018).







Topography vs. Plasmons
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Stretchable Graphene Photodetector with
Enhanced & Tunable Photoresponsivity
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« Corrugated graphene enables stretchability of graphene photodetector

* The control of corrugation allows modulation of light absorption, which leads to
tunable photoresponsivity of graphene photodetector

* 400% increase in photoresponsivity was realized by 200% pre-stretching
19

Kang Kang & Nam, Advanced Materials 28, 4565 (2016) [Cover].



Stretchable Graphene Photodetector with
Enhanced & Tunable Photoresponsivity
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a Biaxially textured
graphene
Corrugated

Au electrodes
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Stretchable Graphene Photodetector with
Enhanced & Tunable Photoresponsivity
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Hybrid Stretchable Graphene Photosensor
Integrated with Optomechanical Modulator
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Plasmonically-Enhanced Stretchable Graphene/Au
Photodetector with Strain-Tunable Photoresponsivity
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Conclusions

« Mechanical Self-assembly
— QOut-of-Plane Deformation
— Integration onto Templates
— Crumpling Hybrid Materials

« Emerging Properties
— Tunable Surface Properties
— Reconfigurable Plasmonic Properties
— Mechanical Stretchability &
Strain Tunability
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