

Elastocapillary Self-Assembly

Spring 2019

Sameh Tawfick

tawfick@illinois.edu

Capillary origami

By Etienne Cliquet, Flotille

https://www.youtube.com/watch?v=n51Vi3rv_kA

Spring 2019

First observations: Elastocapillary aggregation

First observations took place when high aspect ratio microfabricated pillars aggregated during drying.

Elasto-capillarity was considered nuisance to microfabrication of thin beams and pillars.

Tanaka T, Morigami M and Atoda N 1993 Mechanism of resist pattern collapse during development process *Japan. J. Appl. Phys.* 1 **32** 6059-64

Mastrangelo C H and Hsu C H 1993 Mechanical stability and adhesion of microstructures under capillary forces-part ii: experiments *J*. *Microelectromech. Syst.* **2** 33-43

Elastocapillary nuisance → Interesting patterns

Interesting patterns were observed after wetting and drying of CNT forests

Chakrapani N, Wei B, Carrillo A, Ajayan P M and Kane R S 2004 Capillarity-driven assembly of twodimensional cellular carbon nanotube foams *Proc. Natl Acad. Sci. USA* **101** 4009-12

4

Mechanism of formation of interesting patterns

Mud cracks

Getting to the heart of carbon nanotube clusters

MIT researchers create predictable patterns from unpredictable carbon nanotubes.

Denis Paiste | Materials Research Laboratory February 14, 2018

Press	Inquiries
11633	inquines

Integrating nanoscale fibers such as carbon nanotubes (CNTs) into commercial applications, from coatings for aircraft wings to heat sinks for mobile computing, requires them to be produced in large scale and at low cost. Chemical vapor deposition (CVD) is a promising approach to manufacture CNTs in the needed scales, but it produces CNTs that are too sparse and compliant for most applications.

Applying and evaporating a few drops of a liquid such as acetone to the CNTs is an easy, cost-effective method to more tightly pack them together and increase their stiffness, but until

	RELATED	
	Paper: "Process-morphology scaling relations quantify self-organization in capillary densified nanofiber arrays"	
	Ashley Kaiser	
I	Itai Stein	ß

Opportunity: CNT densification by immersion

Low density vertical CNT pillars: high density, strong and more electrically conductive pillars for interconnects

Liu et al. IEEE Trans. Nanotech 8(2):196-203, 2009.

CNT forest as a (stronger) mechanical material

How is scales?

$$\frac{E}{E_d} = \left(\frac{\rho}{\rho_d}\right)^2 = \left(\frac{A}{A_d}\right)^2 = \left(\frac{R}{R_d}\right)^4 = 81$$

And by coating

$$E_{SU8} = 18 GPa$$

 $E_{PMMA} = 25 GPa$

Process control: immersion vs. condensation

Condensation can be used to densify, shape and form very delicate nanostructures.

Forces encountered during "piercing" a liquid interface are avoided Immersion

De Volder* and Tawfick* et al. Advanced Materials, 2010.

How to control elastocapillary self-assembly? **KINETIC**

11

Capillary forming: Complex 3D nanostructures by elastocapillary self-assembly ¹²

Slide by J. Bico

Elasticity vs. Capillarity

Capillary origami

Py et al. PRL 98, (2007)

https://www.youtube.com/watch?v=6gYb2fOnMvM

Spring 2019

Capillary origami

Py et al. PRL 98, (2007)

NETIC

15

KI

Grabbing an air bubble

https://www.dropbox.com/s/gpkig98vb87kxtk/reis_Supplementary_Movie_S1.mov?dl=0

Reis et al. Soft Matter (2010) <u>https://pubs.rsc.org/en/content/articlelanding/2010/sm/c0sm00895h#!divAbstract</u> Spring 2019

Grabbing a liquid droplet

https://www.dropbox.com/s/yy3jyjxhtgmkzmb/reis_Supplementary_Movie_S2.mov?dl=0

Reis et al. Soft Matter (2010) <u>https://pubs.rsc.org/en/content/articlelanding/2010/sm/c0sm00895h#!divAbstract</u> Spring 2019

Slide by J. Bico

Wet hairs

1 mm

with Loïc Moulin, Benoît Roman & Arezki Boudaoud Nature 2004

2 flexible lamellae

more detailed: Kim & Mahadevan JFM 2006

Griffith's criterion (1921):

Multilamellae

Spring 2019

Size Limits For Void-Free Structures

$$L_I = C_1 \sqrt{d_1 \sqrt{\frac{E\pi R^3}{4\gamma}}}$$

$$L_{S} = C_{2}L_{I}N^{3/8}\sqrt{\beta}$$

Py et al., EPL 77(4):44005, 2007.

E = modulus R = radius d = spacing γ = surface tension N = number of filaments in the cluster

De Volder M., Tawfick S. et al., J. *Micromech Microeng.*, (2011)

-s

Slide by J. Bico

KINETIC

Piercing hairs

capillary force $F = 2\pi b\gamma$ $L_{crit} = \frac{\pi}{2} \sqrt{\frac{B}{F}} \sim \sqrt{\frac{Eb^3}{\gamma}} \sim L_{EC}$

post-buckling: complex!

with Benoît Roman & Sébastien Neukirch JMPS 2007

Spring 2019

Spring 2019

TERIALS GROUP 25

Capillary buckling of CNTs

Capillary buckling dynamics

Tawfick S et al, *Langmuir* **27** (10) (2011)

Design for Stable Structures

KINETIC MATERIALS RESEARCH GROUP

Elastocapillary buckling limit

Capillary bending

Devolder *and Tawfick* et al. *Advanced Materials*, 2010. Zhao, and Tawfick et al. *Physical Review E*, 2010. Tawfick and Hart et al. *Nanoscale* 2012.

Multi-directional 3D architectures

Devolder, Tawfick, et al. Advanced Materials, 2010.

Structural analysis of capillary forming transformations

KINETIC MATERIALS RESEARCH GROUP

Large arrays of 3D hierarchical nanostructures

A manufacturing process

Observing capillary forming

https://pubs.acs.org/doi/suppl/10.1021/la4002219

Tawfick et al., Langmuir 2013

35

E.

Observing capillary forming

Tawfick et al., Langmuir 2013

Shrinkage during liquid evaporation

When will densification stop?

1

Watching the Kinetics of Capillary Twisting

Shin and Tawfick Langmuir (2018) Kovanko and Tawfick, in preparation

Threshold and Scaling of Capillary Twists

Kinematics of Capillary Twists

а	l = 21 mm v = 6.2 mm/s	b	l = 21 mm v = 12 mm/s	С	l = 21 mm v = 117 mm/s	d	l = 19 mm v = 117 mm/s	е	l = 17 mm v = 117 mm/s
---	----------------------------	---	----------------------------	---	-----------------------------	---	-----------------------------	---	-----------------------------

Kovanko and Tawfick, in preparation

Threshold of Capillary Twists

Viscous work rate ~ $\mu \frac{U^2}{S} A$

Volume conservation $\frac{v_{lat}}{c} \sim \frac{U}{L}$

$$v_{lat} \sim \frac{\gamma}{\mu} \left(\frac{S}{l}\right)^2 \sim 2 \ mm/s$$

- *l* fiber length
- S fiber spacing
- μ viscosity
- γ surface energy

Kovanko and Tawfick, in preparation

Forces Inducing Twists

Anisotropic forces

 \rightarrow Stiff in the radial direction, soft in the tangential direction

Modeling Capillary Twists

Polymorphic elastocapillary self-assembly

https://www.dropbox.com/s/x58pc3kp020uctn/S2-2018.avi?dl=0

Polymorphic elastocapillary self-assembly

Angewandte

Chemie, 2013

Liquid-induced densification

oions

CNT Electrode

KINETIC

47

Capillary actuators

Slide by J. Bico, ESPCI France

Capillary origami: wrapping droplet → Drug delivery!

Paulsen et al. Nature Materials (2015)

https://www.youtube.com/watch?v=nfu9AjacvtY

Spring 2019

Elastocapillary spooling

Elettro et al. PNAS (2016)

https://www.youtube.com/watch?v=NUGI5VW4frl Spring 2019

Capillary elasticity: wicked membranes

Grandgeorge et al. Science (2018)

https://youtu.be/CXJletDh4N8

Summary

Elastocapillarity: elastic energy ~ surface free energy

- \rightarrow self-assembly from the nano- to the millimeter scales
- → Complex programmable geometries
- → Unusual behavior such as spontaneous twisting or spoolin
 → Shape morphing