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ABSTRACT

McLennan, Michael James. M.S.E.E., Purdue University. May 1987. Quan-
tum Ballistic Transport in Semiconductor Heterostructures. Major Profes-
sor: Supriyo Datta.

The development of epitaxial growth techniques has sparked a growing
interest in an entirely quantum mechanical descriptiqn of carrier transport.
Fabrication methods, such as molecular beam epitaxy (MBE), allow for the
growth of ultra-thin layers of differing material compositions. Structures can
be designed to exploit the wave-nature of carriers, broadening the possibili-
ties of device design. This thesis represents the first step in the development
of a quan‘tum mechanical transport theory. Wave phenomena exhibited by
electrons are discussed, and applications in propoéed devices are presented.
A theory of quantum ballistic transport is developed, emphasizing concerns
for a numerical implementation of the ana_lysis. Finally, example calcula-
tions are presented, illustrating quantitatively the physics of quantum tran-

sport.




CHAPTER 1
INTRODUCTION

Wave-particle duality is not a new concept in physics. Until recently,
however, the wave nature of carriers has been largely ignored in electrical
engineering; a classical, particle description of transport has been adequate.
The optical analogy is familiar: A ray description is appropriate, unless the
refractive index of a medium varies rapidly, compared to the wavelength of
incident radiation. In the past, semiconductor device analysis has avoided
using quantum mechanics directly, by incorporating effects of the rapidly
varying crystal potential into parameters such as effective mass and energy
bands. The remaining, slowly varying potential, due to built-in fields and
applied bias, has been treated in a classical framework. The maturity of
epitaxial growth techniques, however, has sparked recent interest in
developing an entirely quantum mechanical formalism for carrier transport.
Techniques such as molecular beam epitaxy (MBE) and metalorganic
chemical vapor deposition (MOCVD) permit the growth of ultra-thin layers
of differing material composition, with interfaces as sharp as an atomic
monolayer. Since the change in bandgap from layer to layer is abrupt on
the scale of an electron DeBroglie wavelength (typically 100 A - 1000 &),
transport properties of such structures must be determined quantum
mechanically. The superlattice, a periodic structure with alternating layers
of wide bandgap and narrow bandgap materials, is representative of this
new class of devices, and has been the focus of intense investigation.

Esaki and Tsu [1,2] proposed the superlattice in 1969, for application in
negative differential resistance (NDR) devices. In the Kronig-Penney model,
periodicity of the crystal potential gives rise to allowed and forbidden energy
bands. Similarly, the periodicity of material layers in a superlattice results
in a folding of energy bands, into a reduced Brillouin Zone, The
conduction-band is segmented into a series of "minibands," in which
electrons are allowed to propagate, and gaps, in which propagation is

- attenuated. Because carriers are confined to characteristic, "resonant"



energies, the transport mechanism is known as resonant tunneling. For low

biases, applied along the growth axis, carriers propagate via resonant
tunneling. As bias is increased, resonances in each quantum well become
misaligned, and current drops sharply. The resulting negative differential
resistance is a useful phenomena, for producing both amplification and
oscillation. Although the immaturity of epitaxial growth techniques
sabotaged early experiments, in 1972 Esaki et. al. (3] reported NDR in a
GaAs/AlGaAs superlattice. Two years later, Chang, Esaki, and Tsu [4]
confined attention to a double barrier resonant tunneling device, two periods
of a GaAs/AlGaAs superlattice, and reported NDR at temperatures below
77° K. ,

In 1983, Sollner et. al. [5] revived interest, reporting a large NDR region
in the current-voltage characteristic of a GaAs/AlGaAs double barrier
resonant tunneling device. The reported current peak-to-valley ratio was 6:1
at 25° K. Furthermore, current response measured at a driving frequency
of 2.5 THz was remarkably similar to the response expected from DC
measurements, indicating the potential for high frequency applications. One
year later, Sollner et. al. [6] reported the first oscillations generated by a
resonant tunneling device, with a power output of 5 uW at frequencies up to
18 GHz. Shewchuk et. al. reported the first room temperature observation
of NDR [7], and suggested experimental guidelines for the stable
measurement of NDR regions in the presence of oscillations [8]. Tsuchiya et.
al. [9] demonstrated a resonant tunneling device with a number of
improvements, also exhibiting NDR at room temperature. Thin (25 A)
barriers of AlAs were used to reduce thermionic emission current, and
increase resonant tunneling current. Undoped 'spacer” layers of GaAs
surrounding the double barrier region were included, to reduce impurity
migration into the quantum well. Recently, Ray et. al. [10] reported the first
room temperature observation of NDR in a resonant tunneling device
fabricated by metalorganic chemical vapor deposition (MOCVD). Lee et. al.
[11] reported the first room temperature observation of NDR in a strained-
layer GaAs/AlGaAs/InGaAs device. This survey is not comprehensive, but
is intended to convey the widespread interest in resonant tunneling devices.
A thorough recount of the history of resonant tunneling has been presented
by Esaki [12].

The ability to "sculpture" energy bands in one dimension has expanded

__the possibilities of device design, and has underscored the need for a

quantum mechanical description of transport. Although several formalisms



are being developed, a significant amount of work remains. The product of
this thesis, an analysis program for ballistic devices, is merely the first step
in this enormous task.

1.1 Quantum Mechanical Transport Phenomena

1.1.1 Coherent Resonant Tunneling

Coherent resonant tunneling is a direct result of the wave nature of
electrons. As such, it can be understood with an analogy to wave optics.
The optical analogue of a double barrier resonant tunneling device is a
Fabry-Perot interferometer, two partially silvered mirrors in perfect
alignment. Radiation incident on a Fabry-Perot cavity experiences unity
transmission at particular resonant frequencies. Waves multiply reflected
between the two mirrors constructively interfere, reducing the overall
reflection. At incident frequencies for which the spacing between mirrors is
an integral number of half-wavelengths, overall reflection is zero;
transmission is unity. However familiar this result may seem in optics, the
quantum mechanical effect is striking: Two rectangular potential barriers
~are completely "invisible" to electrons incident at particular resonant
energies.

To justify this result analytically, the transmission coefficient of a
resonant tunneling device can be calculated as follows. Consider the double
barrier resonant tunneling device, two potential barriers of Al Ga,_,As
surrounding a quantum well of GaAs, shown in figure 1.1. For simplicity,
band bending has been neglected, and only the conduction-band profile is
shown. Electrons incident from the left contact, and transmitted through
the structure, could follow any one of an infinite number of paths, allowing
for multiple reflections between the potential barriers. If the Schrodinger
equation is solved for each barrier separately, wavefunction amplitudes for
transmitted and reflected plane-wave solutions can be determined. .
Assuming these amplitudes, t and r, represent electrons incident from the
left of a barrier, and assuming the amplitudes t' and r' represent a similar
solution, for electrons incident from the right, the total transmitted
amplitude for each path can be determined. For the first path, electrons are
transmitted through the first barrier, traverse the quantum ‘well, and are
transmitted through the second barrier; the wavefunction is multiplied by

each transmitted amplitude, and acquires phase in the well region. The
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transmitted amplitude for each of the multiply reflected paths is derived
similarly, assuming scattering is infrequent, so that the phase of an electron
remains coherent for the entire time of transit. The total transmitted
amplitude can be calculated by summing contributions from every possible
path:

tb — t2 [1 + rllrzei2ka + (rrlrzeiZka)2 + ] eikmtl
tzeikatl
1 — rllr2ei2ka
where the subscripts of transmitted and reflected amplitudes denote the
barrier encountered. Assume, for simplicity, that the two potential barriers
are identical. Since the structure of figure 1.1 is in equilibrium, the
transmission coefficient is the squared magnitude of the total transmitted
amplitude:

T3
14 R — 2Rpcos(2ka + 2¢)

T

with ' =|r,'| &% = Iy

where
Tp = 4,2 = ¢,
Rp = |r’1|2 = |r2|‘2 .
For electrons incident with ka = nm — ¢, for any integer n,
I
=Ry [T

‘This is the result expected: When the spacing between potential barriers is
an integer multiple of the incident electron half-wavelength, transmission is
unity, in agreement with the analogy of the Fabry-Perot interferometer. Of
course, the reflection from each potential barrier could introduce a phase o,
altering the Fabry-Perot condition for constructive interference. The
energies of electrons satisfying this criterion are called "resonant” energies,
because of the constructive interference of multiple reflections. If the barrier
height were taken to infinity, the resonant energies would be bound states of
an infinite potential well. As such, resonant energies are considered quasi-
bound states of the well region.
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Although the analysis presented above provides significant insight into
the interpretation of resonant tunneling, several assumptions limit
application of the result. Ricco and Azbel [13] discuss the effect, without
assuming identical potential barriers in equilibrium. For electrons incident
at the resonant energy, neglecting constants, the transmission coefficient is
proportional to Tpin/Tmax Where Ty, is the smaller of the transmission
coefficients of the two barriers, and Tp,, is the larger. For identical
barriers, transmission is unity at resonance; however, structures designed to
be symmetrical in equilibrium are quite distorted by the application of bias.
Away from equilibrium, the maximum possible transmission could be
drastically smaller than one. For electrons incident at non-resonant
energies, the transmission coefficient is proportional to Ty, T ,,- Hence, the
transmission for resonant tunneling structures is characterized in energy
space by narrow spikes, located at each of the resonant energies. An
important consideration for current density is the width of these spikés in
energy space, since only incident electrons near the resonant energy
experience significant transmission. For electrons with an energy slightly
off-resonance, the transmission is approximately Tp;;Tpay indicating that
thin barriers, which yield a large transmission, provide a broad resonance
width. For identical barriers, only the energy resonance width is controlled
by barrier thickness. '

Returning to the equilibrium condition, we will now investigate the
transport across an arbitrary number of potential barriers. Assume, for
simplicity, an infinite superlattice, a device with an infinite number of
identical potential barriers and wells. In determining the energy bands for a
bulk semiconductor, the periodicity of the atomic core potential results in a
folding of the free-electron dispersion relationship into a Brillouin Zone;
moreover, energy bands are perturbed from the free-electron condition.
Similarly, the periodicity of a superlattice potential results in a folding of
energy bands into a reduced Brillouin Zone, since the period of a superlattice
(one barrier and one well) is much larger than the period of the crystal
potential. Of course, further perturbation of the band structure can be
accounted for, with an analysis such as the Kronig-Penney model taking into
account the form of the superlattice potential. No real device, however, can
have infinite extent. Just as the finite size of a crystal discretizes the
Brillouin Zone into a fine mesh of allowed wavevectors, a finite number of
superlattice periods further restricts the number of allowed wavevectors. It

has been shown [14] that for a finite superlattice of N periods, there are N-1



energies in each .bangl for which propagation is not attenuated (transmission
is unity); the range of Bloch wavenumbers is segmented into N intervals,
yielding N-1 resonant energies for each energy band.

This discussion is represented schematically in figures 1.2 and 1.3.
Energy bands for an infinite superlattice of period L are shown in figure 1.2
for the entire range of unique Bloch wavenumbers. Considering a double
barrier resonant tunneling device (a two-period finite superlattice), the range
of Bloch wavenumbers is segmented into two intervals, yielding one resonant
energy in each of the energy bands. A plot of transmission coefficient versus
energy, figure 1.3, shows a single peak at each resonant energy, for each
band. For a triple barrier resonant tunneling device, the range of Bloch
wavenumbers is segmented into three intervals, yielding two resonant
energies in each of the energy bands. Peaks in the transmission coefficient
of the double barrier structure appear to be split into doublets, for each
‘energy ‘band. As the number of superlattice periods increases, nearly all -
energies in each band are allowed; conduction "minibands" arise.

»

1.1.2 The Origin of Negative Differential Resistance

The motivation for the preceeding discussion of resonant tunneling lies
in its application, negative differential resistance (NDR). By definition,
" differential resistance is understood as

‘ v
R‘d = _a'I—.-

Regions of NDR appear in a current-voltage relationship wherever current
decreases as voltage increases.

With the aid of figure 1.4, the origin of NDR can be understood as
conservation of transverse momentum, of electrons tunneling into a system
of states with reduced dimensionality [15]. Consider a double barrier
resonant tunneling device at absolute zero temperature, in equilibrium.
Electrons incident from a Fermi sea in the contacts are restricted to energies '
below the Fermi level. If the first quasi-bound state is above the Fermi
level, as shown in the diagram, then there are no electrons with sufficient
energy for resonant tunneling. The application of a small bias, however,
lowers the quasi-bound state in energy.  Electrons with the proper
longitudinal momentum are available for tunneling; specifically, consider

- electrons at the Fermi energy. Assuming the device is free of impurities and =~
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Figure 1.4 Negative differential resistance as a consequence of
conservation of transverse momentum
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‘inhomogeneities, energy and transverse momentum (k,, k,;) must be
conserved. The total number of electrons available for tunneling at the
Fermi energy, therefore, corresponds to the shaded disk of the Fermi sphere.
Further application of bias continues to lower the required longitudinal
momentum, increasing the area of the shaded disk and the associated
number of tunneling electrons. This area increases with bias, until the
quasi-bound state falls below the conduction-band edge of the supplying
contact, and current drops sharply, yielding negative differential resistance.

The dependence of NDR on conservation conditions discussed above
was demonstrated experimentally by Morkoc et. al. [16]. A structure was
fabricated with a quantum well, bounded on one side by a thin (25 A)
potential barrier, and bounded on the other by a thick (500 A) barrier.
Incident electrons could tunnel only through the thin barrier into the well, to
be collected from the well by lateral diffusion. The device contrasts double
barrier diodes, in which electrons propagate across the entire structure.
Nevertheless, a pronounced NDR region was observed in the current-voltage
characteristics at 77° K and 300° K, verifying the origin of NDR.

1.1.3 Coherent Resonant Tunneling versus Sequential Tunneling

In the discussion of coherent resonant tunneling in section 1.1.1,
electron transport was assumed to be ballistic; collisions were assumed to be
infrequent, so that multiply reflected electrons could exit the device before
suffering a scattering event. Luryi [15] was the first to question this
assumption, proposing an alternative transport mechanism. If, in the course
of multiple reflections, an electron suffered a scattering évent, the
wavefunction phase would be randomized. Therefore, scattering events
destroy the coherence needed for constructive interference in the Fabry-
Perot effect. Without coherence, the wavefunction amplitude would not
build-up within the well, and transmission would not be enhanced;
tunneling, however, would still occur in a sequential fashion, and negative
“differential resistance, dependent only upon conservation considerations,
would still be observed. '

A question‘ of the dominant transport mechanism, whether coherent
resonant tunneling or sequential tunneling, was resolved by Capasso et. al.
[17]; the argument presented is as follows. To achieve Fabry-Perot

enhancement of transmission, a finite time 7, is required for the
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wavefunction of a multiply reflected electron to build-up within a well.
Stone and Lee (18] proved that if this time constant To is longer than the
scattering time 7, the transmission at resonance will be reduced by a factor
proportional "to 7,/(7y + 7); sequential tunneling ‘will dominate. The
scattering time 7 is the inverse of the total scattering rate, including elastic
processes due to impurities and inhomogeneities, and inelastics processes
such as phonon scattering. In terms of the energy of electrons, the intrinsic
resonance width |7, the full width at half-maximum of a transmission
resonance, is related to /7. As discussed earlier', thin barriers provide a
broad intrinsic resonance width. A measure of scattering in terms of energy,
the collision broadening of electrons, is related to h/r. If the collision
broadening is greater than, the intrinsic resonance width, sequential
tunneling will dominate. Therefore, conditions favorable for observing
coherent resonant tunneling include using structures with thin barriers, to
increase the intrinsic resonance width, and performing experiments at low
temperatures, to reduce the collision broadening.

1.1.4 Effective Mass Filtering

By exploiting the competition between coherent resonant tunneling and
sequential tunneling, Capasso et. al. [17] proposed an intriguing application:
effective mass filtering. Since the tunneling probability through a potential
barrier depends exponentially upon effective mass, heavy holes face a
narrower intrinsic resonance width than electrons. In a properly designed
superlattice, assuming collision broadening energies for both carriers are
nearly equal, the transmission of electrons could be enhanced by coherent
resonant tunneling, while heavy holes, rélying on sequential tunneling,
remain relatively localized in quantum wells. Superlattices can be used to
filter the transport of carriers, allowing electrons to propagate and impeding
heavy holes. a

Applying this effect to photodetectors, Capasso et. al. [19] demonstrated .
a large photoconductive gain, which could be tuned by altering superlattice
design parameters. In photodetectors, gain is determined by the ratio of
electron and hole velocities, if the hole lifetime exceeds the hole transit time.
If holes are relatively localized, gain is determined by the ratio of the
electron lifetime to the electron transit time [17]. These properties are
uncontrollable for conventional photodetectors using bulk semiconductors;

superlattices, however, can be fabricated to provide a particular electron
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transit time, allowing greater freedom in the design of photodetectors.

1.2 Proposed Devices

Success in the demonstration of resonant tunneling has instigated a
number of proposals [20-24], for devices with a third terminal to control
NDR characteristics. One such structure, described by Capasso et. al. [20]
and shown in ‘ﬁgur‘e 1.5, is a heterojunction bipolar transistor with a single
-quantum well in the base region. Collector current is determined by the
number of minority carriers, injected from the emitter, which traverse the
base region. The presence of the resonant tunneling structure in the base
restricts transmission of electrons to those with energies near resonance. As
the base-emitter potential is manipulated, peaks in the collector current
appear when the quasi-bound states of the quantum well align with the
energy at which the maximum flux of electrons is injected. It was noted in
section 1.1.1 that the application of bias across a double barrier device
destroys the symmetry of the two barriers, degrading transmission. Since
the controlling bias for this transistor is applied across the base-emitter
junction, rather than across the base region itself, transmission peaks for the
resonant tunneling structure remain close to unity; resulting peaks in
collector current would be pronounced. When operated as shown in figure
1.6, the peaks and valleys in collector current give rise to an output voltage
swing between binary levels. In this configuration, an array of transistors
could be used to provide binary output for a high-speed, é,nalog—to-digital
converter. . . ‘ |

Another device, the negative resistance Stark effect transistor
(NERSET), was proposed by Bonnefoi et. al. [21]. The structure, presented
in figure 1.7, is a double barrier resonant tunneling device, with an extra
(base) contact. Because it is shielded by a thick (1000 A - 1500 A) potential
barrier, base current is negligible. A plot of collector current versus
collector-emitter voltage exhibits NDR, as expected for a resonant tunneling
device; however, the voltage at which NDR is observed can be shifted, by
adjusting the base-emitter voltage. The position of the collector contact is
such that the emitter is not completely shielded from electric fields produced
by the base. '

Finally, Nakata et. al. [22] proposed a triode with a metal-insulator

supei’lattice in the base, acting as an artificial semiconductor. Shown in
figure 1.8, this resonant electron transfer triode (RETT) is expected to
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"Figure 1.5  Resonant Tunneling Transistor (RTT) proposed by Capasso et.
al. [20], shown (a) in equilibrium, and (b) with resonant
tunneling through the first quasi-bound state

"

o d

Vi

Figure 1.6  Voltage transfer characteristic for the RTT, presented. by
Capasso et. al. [20]
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perform well in high-speed applications because of the low resistivity of
metal contacts. An artificial conduction-band in the base region is formed
by the periodicity of the metal-insulator superlattice, as discussed in section
1.1.1. When the device is biased such that the emitter Fermi level is aligned
with the artificial conduction-band in the base, electrons resonantly tunnel
from emitter to collector. Of course, empty states are assumed to be
available in the collector; the collector-base junction must be biased
accordingly.

Other device proposals exist [23,24); apart from these, the three
presented above are easily understood, and one-dimensional in nature.
Descriptions  of device operation were intended to be qualitative,
emphasizing the need for a quantum mechanical analysis tool, for a variety
of one-dimensional applications. The remainder of this thesis is devoted to
the development of such a tool.

1.3 Overview of Thesis

Chapter 2 provides the analytical foundation necessary for a one-
dimensional, quantum mechanical analysis of arbitrary semiconductor
heterostructures. Expressions for the evaluation of electron density and
current density are presented, and two techniques for the solution of the
Schrodinger equation are discussed in detail. The incorporation of space-
-charge effects, by a self-consistent solution of Schrodinger’s and Poisson’s
equations, is also described. @ Numerical considerations for the
implementation of this analysis are discussed in Chapter 3, highlighting the
importance of integration in the calculation of electron and current
densities. Example calculations are presentéd in Chapter 4, and concluding
comments are given in Chapter 5. In addition to demonstrating quantum
mechanical effects, the qualitative discussion of electron transport in the
preceeding sections was presented to offer the insight into transport
phenomena that a numerical simulation cannot provide.
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~ CHAPTER 2
BALLISTIC ELECTRON TRANSPORT

To reduce a quantum mechanical description of carrier transport to a
level feasible for numerical calculations; a number of simplifications must be
made. First, the conduction-band profile is assumed to vary in only one
- dimension; both material composition and doping density are uniform in
planes transverse to the direction of electron propagation. Second,
participating semiconductors are assumed to be n-type, so that electrons
provide the dominant contribution to both carrier and current densities;
holes and electron-hole interactions are neglected. Furthermore, electron-
electron interactions are assumed to be unimportant, allowing for a single
particle approach to transport. Third, an envelope function solution for the
electron wavefunction is assumed to apply. Effects of the crystal potential
are parameterized by energy bands and an electron effective mass, which
change abruptly at material interfaces. Bastard and Brum [25] have
demonstrated that this assumption is reasonable, since, for the majority of
lattice-matched heterostructures, Bloch wavefunctions differ little from one
material to another. The validity of this assumption, however, should be
questioned if material thicknesses are reduced to a few atomic sublayers.
Finally, devices are assumed to be short, relative to an electron mean-free
path, so that scattering events are infrequent, and can be neglected. With
regard to the discussion of resonant tunneling in section 1.1.3, this is
perhaps a drastic simplification. The dwell time of a multiply reflected
electron in a "short" resonant tunneling device could be much longer than
the time between collisions. Presently, much work remains for the’
incorporation of scattering into quantum transport theory.
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2.1 Formulation of the Analysis

- A number of formalisms have been pursued, including the quantum
density matrix [26], Wigner function studies [27], and direct solution of the
Schrodinger equation. As an analogue of the classical distribution function,
the quantum density matrix represents the distribution of electrons in
position space, along is main diagonal, and in momentum space, along its
cross diagonal. From an equilibrium solution, it evolves in time according to
the quantum Liouville equation, to which a collision term may be added for
the simulation of scattering. Frensley [26], however, has reported some
numerical instabilities when the time of simulation is large, and boundary
conditions are difficult to implement. Since the Wigner distribution function
can be obtained from the quantum density matrix by a transformation of
variables, it is not surprising that some of the same numerical difficulties
have been encountered [27]. Although neither of these methods has achieved
the populanty of a direct solution of the Schrodinger equation, both are
promising for future studles, offering a convenient means of adding collision
terms. '

Because of the insights provided by both transfer matrix and scatter -
matrix solutions, the details of these methods are presented below in section
2.2. Both methods, in spite of their differences, merely provide a means of
solving a reduced Schrodinger equation. The following approach, common to
both methods, was first proposed by Tsu and Esaki (28], and later modified
by Vassell et. al. [29] to account for a spatially varying effective mass. The
physical situation is pictured in figure 2.1: Contacts, assumed to be in local
thermodynamic equilibrium, inject plane-wave electrons into an arbitrary,
- one-dimensional device, with a spectrum of wavevectors k; the potential
profile is static, assuming phonon scattering can be neglected, so that the
electron wavefunctlon obeys the tlme—mdependent Schrodinger equation:

==V T((?')+ W~("‘)]+DC(Z)\P~(") EVLF) (2.1)

2m() ()(9

where V, represents the gradient of transverse directions (x and y), and
effective mass variations along the z-axis have been taken into account,
following Vassell [29]. The conduction-band profile Ec(z) includes the

electrostatic potential P(z), as well as the conduction-band offset for
different material layers E_(z):
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Figure 2.1  Plane-wave electrons, injected from contacts in thermodynamic
equilibrium, propagate through an arbitrary potential profile
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Ec(z) = Eq(z) — q¥(2) (2.2)
Assuming the device dimensions in the transverse plane are much larger
than the confinement along the z-axis, the longitudinal and transverse
motions of the electron can be separated, and the wavefunction W—E(?') can be
written as:

1kxx ikyy

Vp(x,y,2) = \/— — 7= %(2) (2-3)

where () is the volume of normalization. Upon substituting this expression
into equation 2.1, and simplifying the result, one obtains:

8

*

2m, E,
’Y(z) 92 7 B~ 5g) ~ Bollhlz =0 (2.4)

where E is the total energy of the anected electron; Et is the transverse

"/)k(z)

energy ‘ﬁzkt2 /2mc, : is the effective mass in the injecting contact, and the
function (z) = m'(z)/m, represents the spatial variation of effective mass.
By somehow approximating the conduction-band profile of an arbitrary
device, the reduced Schrodinger equation, 'equation 2.4, can be solved
numerically. Once this is accomplished, any other quantities of interest can
be calculated, as described below.

2.1.1 Calculation of Electron Density

~ The electron density can be obtained by summing the magnitudes of
electron wavefunctions, injected from the contacts with ‘a spectrum of
wavevectors. Consider electrons injected from the left contact (z =0). The
density of electrons propagating from left to right is

(2) = 22| Vo?) 12 £(By)
¥ g

1 3 ‘2
= —— [d% | ¥ (2) |21(E
L[| () ()
where
1
f(Ek) - 1 + e(Ek"EF)/kHT (2'6)

is the Fermi-Dirac factor, and
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h’k’ 2 _ 12,12 4 12
Ek = + Ec(O) Where k = kx + ky + kz
2m, -
with E¢(0) being the conduction-band edge in the injecting contact, which is
later taken as a reference point, i.e., Eg(0) = 0.

Note that, as shown in equation 2.4, Y (z) depends on the transverse
energy E,;, complicating the integration. A rigorous estimate of n(z) would
then entail calculating v (z) for all momenta, longitudinal and transverse,
and integrating numerically. To avoid this complication and keep the
solution tractable, we follow Vassell [29], and replace E; by its thermal
average (kgT) in the reduced Schrodinger equation. The wavefunction can
~ then be removed from the integration over transverse momentum: '

%
0@ = [ 5 [
[ 541+ explBo(0)Bek e (k2 + k) oT] (2:7)
0 m,

and the integration over transverse momentum k; can be performed exactly:

- dk,
' T(z) = [

027r

| Y ez 12 7 (Ky) | (2.8)

where 0""*(k,) represents the integration over transverse momentum:

‘kgT k2 '
077 () = = 5 1 + expl(By — Bo(0) - /Tl @)

Following a similar derivation, the electron density associated with the
flow of electrons from right to left can be obtained. The result is identical
to equations 2.8 and 2.9, with the replacement of Eg(0) by Eg(L), and with
the proper calculation of the wavefunction for injection by the right contact
(z=0L). The total electron density is the sum of the contributions of two .
oppositely flowing streams:

n(z) = n'(z) 4+ 0" }(z) (2.10)
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2.1.2 Calculatxon of Current Density

‘ In a manner similar to the calculation of electron den51ty, the total
current density can be resolved into two components: one due to electrons
impinging from the left contact, and the other due ‘to electrons from the
right. For electrons propagating from left to right, the current density is
given by

P =y S TR) £(Ey)
T m

— =9 [ @ k, T () £(Bp)
47°m

C

where T~ r(_-‘) is the transmission coefficient for electrons propagating from
left to right:

e kz(L)/m*(L) oo Kl
T (Tg)— kz(o)/m: IQA( (L)I 1,(0)

All other definitions apply, as presented in section 2.1.1. It was previously

1 I,(/l—r )l2

‘assumed that the wavefunction exhibits a weak dependence on the
transverse energy E;, so that E, could be taken as its constant thermal
average, in the solution of the Schrodinger equation. Since the transmission
coefficient is proportional to the magnitude of the wavefunction, this same
assumption allows it to be removed from the integration over transverse
momentum,

J‘f’v ——9—f o =k, T (k,) f ——k—kt f(Ey) (2.11)

mTO

and the transverse integrartion can be performed exactly, as in section 2.1.1:

por = T S gm0y )

m. o

For electrons incident from the right contact, the solution is similar to )
equation 2.12, with use of the expressions T"(k,) and " 7!(k,). As discussed
in section 2.1.1, the factors o(k,) differ only by the conduction-band edge of

the injecting contact. Similarly, the roles of left and right must be switched
for the transmission coefficient:
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I(0)
(L)’YO)

The total current density is then the difference of the two oppositely flowing
streams of electrons:

J(z) = I77(z) = Fl(2) (2.13)

T (k,) = — 1yl

2.2 Solution of the Schrodinger Equation

To complete the analysis, the reduced Schrodinger equation, equation
2.4, must be solved for the entire spectrum of longitudinal wavevectors k,;
integrations for electron and charge densities can then be performed.' For an
arbitrary device, some numerical approximations of the conduction-band
profile and effective mass variation must be made. In the following
descriptions of transfer matrix and scatter matrix solutions, the device is
segmented into a series of small intervals, over which both the conduction-
band profile and effective mass are assumed to be constant. This situation
is represented schematically in figure 2.2. In an interval of constant
potential and constant effective mass, solutions of the Schrodinger equation
are known analytically. Hence, the problem is reduced to matching
solutions across the device at interval boundaries. An inspection of equation
2.4,
%

~ Eo(o)lth(s) = 0

o1 1 E;

— |- l/&()

o1 | 2(2) s 72)
repeated here for convience, leads to the condition:
A [ 1

glt9) d€

Proper solutions of the Schrodinger equation require continuity of Y (z) and

(1) 5 ’Q/)k(z) rather than the usual continuity of the wavefunction and its
z

derivative. By representing solutions in a matrix form, these continuity
conditions can be assured by cascading transfer or scatter matrices across

lim —
«—0 —C (9{

s

the device. An application of contact boundary conditions, then, completes
the solution.
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2.2.1 Transfer Matrix Technique

2.2.1.1 Deriving the Transfer Matrix

Consider a solution of the reduced Schrodinger équation in an interval
n, shown in figure 2.2." Within the interval, both the effective mass and the
conduction-band profile are constants; the Schrodinger equation further
reduces to: ’

32 .
N d)n(z) = _ﬂgwn(z) (2°14)
022
with the wavevector f3;, equivalent to k,(z,), given by:
1
1——|—E
fyn ] C,n]

where -, and Ec, are taken as their average values at the interval

*

2m

2 C
By = 2

E, + E,

boundaries. The longitudinal energy E, =szz2/2m: is constant, with the
value determined by the incident momentum k,. This second-order partial
differential equation can be reduced to two first-order equations. Written in
matrix form, equation 2.14 becomes:

) "/)n 0 1 ¢i1
0 ||~ =82 o [w (2.15)

where the prime notation denotes partial differentiation with respect to z.
Equation 2.15 is of the form

d
—1(z) = Al(z

() = AT(2) |
where U represents the column vector, and A is the matrix. Since the matrix
A is a constant in the interval, the solution of equation 2.15 is an
exponential:

2

STAAA S+ ]

2
W(z) = W(0)e* =T(O)[I + zA + —zzTAA +

After carrying out the Taylor series expansion with the matrix A of equation
2.15, the wavefunction and its derivative at the end of an interval can be
related to that of the interval start:
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| cos(8,8,)  sin(Ba6)/Bu [ n
U |mss = | —Busin(Bady)  cos(Baby) | | %' | emai, (2.16)

with &, being the width of the interval, &, =z, — 2, ;. An important
subtlety is that the column vectors shown above are within the same
interval n, by an infinitesimal amount. What remains is to apply continuity
conditions to the wavefunction, and write the result in the form of a transfer
matrix. As described earlier, proper solutions of the Schrodinger equation
require:

"vbn(z:—l) = n—l(z;—l)

P PP
e O "wbn(zn—l) Yoy O n-l(zn—-l)

With reference to figure 2.2, the plus and minus superscripts of z, represent
positions an infinitesimal amount of the positive and negative sides of the
interface. From this point forward, the superscript notation is dropped,
with an understanding that positions z, lie within the interval n. Including
the above continuity conditions, the transfer matrix describing the
rdevelopment of the wavefunctlon across an mterval is given by:

| ~p  sin(B, 5n)
[’an] Cos(ﬁnén) “Ya=1 ﬁn l"l,bn] ( )
' = N 2.17
Bl (6,8 1°°s(ﬂ )| Ll

If the conduction-band profile were approximated by piece-wise linear
segments, rather than constant intervals, the basis of the transfer matrix
would be Airy functions. A solution of this type, reported by Lui and
Fukuma [3‘0], requires fewer intervals, but matrix elements are more difficult
to calculate. :

Note that, for an electron tunneling through a classically forbidden
region, the wavevector [, would be purely imaginary. In this case, the sine
and cosine functions are hyperbolic, and the elements of the transfer matrix
could be quite large. In the process of cascading transfer matrices, described
below, elements of a composite matrix can become large enough to cause
overflow in a computer simulation. The checks needed to detect and avoid

overflow are a serious limitation for the transfer matrix technique.
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2.2.1.2 Applying the Transfer Matrix

The task remaining is to impose boundary conditions at the contacts.
In the constant potential of the contacts, the electron wavefunction can be
represented by plane-wave solutions traveling in both directions. As shown
in figure 2.3, a plane-wave of unit amplitude is injected, and the resulting
transmitted and reflected amplitudes must be determined. Assuming
contacts are ideally ohmic, electrons reaching a contact are completely
- absorbed. The wavefunction and its derivative at the end of the device can
be related to that at the start by cascading transfer matrices across each
interval:
. e
,;bl _— = [Mn] Mn_i] Mn—a] © 0 M) [d,r]z;O
Y 19
E2 P T

where [Mj] is the transfer matrix for section 7, and [M] is the overall transfer

matrix. Consider electrons injected from the left contact. The plane-wave
solutions shown in figure 2.3 can be represented as wavefunction vectors,

}p} 141 [¢] [ ¢
0o ™ [1Bo(1 = 1) B i~ it

and the resulting matrix equation,
1+4r

[ 1 my; My
|16nt |~ [mor myy | [i6(1 — 1)
can be solved for the transmitted and reflected amplitudes, t and r. Here,

the overall transfer matrix [M] has been written showing each of its
components. The reflected amplitude, therefore, is given by,

Bo . . My
——myy — ifymyy | — [myy +i—— _ ,
Bn Bn

r = - (2.18)
Bo . .. My
BT ifomyq |+ |my + .

Finally, the wavefunction and its derivative can be found at each point in
the device:
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Figure 2.3 Boundary conditions in the contacts for plane-wave injection




29

( 1+r
LN Mp] Mpy] - [My] iBy(1 — 1) (2.19)
The solution shown above could be equally represented as:
( (2 -1 t
1 IR [ AT ARIEERR V)

However, in a numerical simulation, where the transmitted amplitude of
tunneling electrons could be small enough to underflow, the incorrect value
t =0 would cause the entire wavefunction solution to be zero. Equation
2.19 is therefore the prudent choice for all transfer matrix applications.

2.2.2 Scatter Matrix Technique

2.2.2.1 Deriving the Scatter Matrix

The technique of scatter matrices is similar to the transfer matrix
method, except that the column vectors used to represent the wavefunction
are positively and negatively traveling wave amplitudes, rather than the
wavefunction and its derivative. In general, scatter matrices relate the
incoming and outgoing carrier fluxes at an interface. Neglecting
recombination and generation processes, the number of carriers is conserved;
consequently, scatter matrices are \n0rmally unitary. In the following
approach, a scatter matrix is derived, relating incoming and outgoing wave
amplitudes. Because wave amplitudes, rather than carrier fluxes, are
employed as the basis, the resulting scatter matrix is not unitary. The
number of carriers is conserved, however, provided that the proper definition
of the transmission coefficient, presented in conjunction with transfer
matrices, is used. As assumed in the transfer matrix technique, the
conduction-band profile and spatially varying effective mass are broken into
a series of intervals, over which both can be taken as constants. Solutions
satisfying the reduced Schrodinger equation can be represented by positively
and negatively traveling plane-waves, within an interval:

82

’é_z'{ n(2) = -—'Bl?’(/)n(z) (2'20)
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o) = gore® + gre | (2.21)
Where‘
2m . 1
)81? =" .hzc E, + E¢|1 - :/: "'EC,n]

The scatter matrix we hope to obtain is of the form:

%21 R T|| ¢ 222
= ~ 2.22
1;|-+1 T R' d)n+1

Consider ‘the interface between intervals n and n+1, shown in figure 2.4.-
For a plane-wave of unit amplitude injected from the left, the transmitted
and reflected amplitudes, t and r, can be determined. For electrons incident

from the left of the interval, the wavefunction in each interval is assumed to
be:

w =¢+ei/3nz+¢_e-—i/1nz
n n I

— eiﬂnz + re—iﬂnz‘

— + i/}rﬂ- 12 - -iﬂm 1z
¢n+l = Pn+1€ + stn-l-le

— teiﬁn+lz

Reflections from interfaces to the right of interval n are neglected for the
present analysis, so that the input ¢,,; is zero. However, multiple
reflections are considered explicitly in cascading scatter matrices, to obtain a
composite matrix for the whole device. In figure 2.4, the position of the
origin for an alternative coordinate system 2z’ has been shifted to the
interface, to simplify the analysis; all exponential terms, evaluated at the
interface, are unity. By demanding continuity of the wavefunction, and its
derivative divided by the effective mass parameter, the following
relationships are established:

l1+r=t

' B
i1 —r1) =it
'7n ’YIH- 1

from which the transmitted and reflected amplitudes can be determined:
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Figure 2.4  Derivation of a scatter matrix by considering transmission and
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= 2'611/,7’!1 r = ﬁn/fyn _'an+l/’7n+l
ﬁn/'yn + ﬁn+l/’7n+l ﬁn/’yn + IBn+l/'7n+l

Of course, these amplitudes are valid only at the interface. For the scatter
matrix to describe the entire interval n, the phase acquired by an electron
while propagating in the interval must also be taken into account, as shown
in figure 2.4. Following a similar derivation, the transmitted and reflected
amplitudes, t' and r', for an electron incident from the right of the interface,
can also be determined. The result of this analysis is embodied in a scatter
matrix, relating the amplitudes of incoming and outgoing wavefunctions:

-
K:ll - Kjll"l'l eizﬂnén . 2K:n.+l eilgnén
_ +
én Kp + Kpir Ko + Kppy ¢ ( )
= 2.23) -
+ —_ —
A My g Far1 " | |fan
Ky + Kpt1 Ky + Kt
where
K = —
n =
"
K, _ ﬁn-l—l
n+1 —
Tn+1

2.2.2.2 Cascading Scatter Matrices

In the transfer matrix technique, presented in section 2.2.1, the method
of cascading matrices was simple matrix multiplication; the transfer matrix
related the wavefunction and its derivative at one end of an interval to that
at the other end. Scatter matrices, however, relate the output wave
amplitudes, on opposite sides of an interval, to the input amplitudes, also on
opposite sides of an interval. A more complicated method of cascading
scatter matrices is therefore required. Keeping in mind the definition of a
scatter matrix, represented by equation 2.22, we will derive the composite
scatter matrix for a region described by two, individual matrices.

The elements of a scatter matrix (R, T’, T, R’) represent the amplitudes
of plane-wave electrons transmitted across (T, T’) or reflected from (R, R’)

ﬂﬁmﬂ%mﬁemww%ﬁw—rmm
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conduction-band or effective mass), causing the wavefunction transmission
and reflection. It follows that, in a region of two intervals, an electron could
be multiply reflected between two interfaces. By summing the amplitudes of
electrons following an infinite number of multiply reflected paths, the overall
transmitted and reflected amplitudes can be determined. This analysis is
pictured in figures 2.5 and 2.6. In figure 2.5, electrons incident from the left
of the region could be transmitted straight through the structure, or could
experience an infinite number of multiple reflections before being
transmitted. The total transmitted amplitude is the sum of the
contributions from each possible path:

T =Tel +R/Ry+ Ry Ry)* + -+ |T,

where the subscripts indicate the interval in which transmission or reflection
occurs. The phase acquired by the wavefunction in the course of multiple
reflections, considered explicitly in section 1.1.1, is contained in the definition
of scatter matrix elements, and need not be added in this analysis. Since
the infinite series of multiply reflected terms is a geometric series, the
composite transmitted amplitude can be simplified:

T = T,[1 — R, Ry|™'T, (2.24)

Following a similar derivation, the remaining elements of the composite
scatter matrix can be determined, completing the analysis:

R =R, + T Ry[1 — R R,|"!T, (2.25)
T' =T, [1 + Ryl —Ry'Ry| 'R/ |T, (2.26)
R' =R, + Ty[1 =R, Ry|"'R)/ T, (2.27)

In contrast to transfer matrices, the elements of a scatter matrix remain
bounded. Even if the product R, R, were to approach unity, making the
inverse of [1 —R,'R,| large, transmitted amplitudes T, and T, would
approach zero, by particle conservation laws. Since many computers allow
small numbers to underflow benignly to zero, a scatter matrix solution can .
be implemented with relatively little error checking.
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2.2.2.3 Applying the Scatter Matrix

With the ability to cascade scatter matrices, and with the same contact
boundary conditions described for transfer matrices (see figure 2.3), the
“scatter matrix solution can be completed. Assuming the scatter matrices for
each interval are knoWn, we define the composite scatter matrix for an
interval n as the cascade of all scatter matrices from interval 1 to interval n:

SIC'—‘SI

S2C = {Sl ’ S2]
56 {sf.l | s,.]

wheré S, is the individual scatter matrix for interval ¢, SC is the composite
scatter matrix for intervals 1 to n, and {e,e} represents the cascade
operation described in section 2.2.2.2. An application of the contact
boundary conditions shown in figure 2.3 results in a trivial solution for the
transmitted and reflected amplitudes. For a device of N intervals, the
composite scatter matrix for the entire structure is Sg. Remembering the
definition of a scatter matrix, one would expect the overall transmitted and
reflected émplitudes, for electrons injected from the left contact, to be TIS
and Ry, respectively. This is the result obtained:

- rg s o

The wavefunction amplitude at the left contact (z = zg) is then 1 + RY, and
that at the right contact (z = zy) is TS. Similarly, the wavefunction
amplitudes for electrons injected from the right contact are 1 + RyC (at
z = zy), and Ty'C (at 2z = zg).

RN T'N

Ty R'§

What remains is to determine the wavefunction at all other points in
the device. This is accomplished by transforming the scatter matrix
(equation 2.22) into a transmission matrix:
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$an| [T-R[T]'R R [T |4
- |= _ - _ 2.28
N e N T AT (829
- The transmission matrix relates the amplitudes of positively and negatively
traveling waves, on one side of an interval, to that on the other side of an
interval; it is a restatement of equation 2.22, with a more convenient vector
basis. For electrons injected from the left contact, the composite scatter
matrix Sf can be transformed into a transmission matrix, relating the wave
amplitudes at a position z =z, to the known amplitudes in the contact.
Hence, the wavefunction amplitude can be determined at any point n in the
device:

(2.29)

¢: anC - RnIC [TnIC ]‘IR’!? RnlC [Tnlc ]*1 [1]
¢; B —[Tnlc ]_IRS [Tnlc ]_1 r

=03 +¢5 (2.30)

As mentioned above, r is the overall reflected amplitude, taken as ng from
the composite scatter matrix for all N intervals of a device. For electrons
injected from the right contact, the procedure is similar; however, scatter
matrices must be cascaded in the opposite order, so that the wavefunction
at any point in the device can be related to that of the injecting contact.

2.3 Incorporating Space-Charge Effects

As explained in section 2.1.1, the calculation of electron density requires
a solution of the reduced Schrodinger equation (equation 2.4), for a spectrum
of incident wavevectors k,. For both of the solution techniques presented
above, the conduction-band profile was assumed to be known. Included in
the conduction-band profile, however, is the electrostatic potential ®(z) (see
equation 2.2), which depends on the electron density, as specified by the
. Poisson equation: ’

d [e(z)-:—zq)(z)

e = —q[Np(2) — Nx(z) — n(z)] (2-31)

where €(z) is the dielectric constant, Nj(z) and N;(z) are respectively the
donor and acceptor impurity concentrations, and n(z) is the electron density.
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A proper device analysis requires solutions for electron density and
electrostatic potential to be self-consistent; therefore, space-charge effects
can be incorporated into the analysis by an iterative solution for both
electron density and electrostatic potential. First, a guess for the
electrostatic potential, such as a classical solution of the problem, is used to
determine the electron density. This density is then used in the solution of
equation 2.31, for a corrected guess to the electrostatic potential. A
modified electron density is then determined from the corrected potential,
and the process is continued until convergence is satisfactory. Although
space-charge effects were neglected in many early analyses [26-32], recent
reports [33-34] have established the importance of a self-consistent solution;
the example calculations, presented in Chapter 4, confirm this.
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CHAPTER 3
NUMERICAL IMPLEMENTATION -

~ Given the theoretical foundation presented in Chapter 2, a numerical
simulation of an arbitrary device would seem straightforward; the flowchart
of figure 3.1 illustrates a simplified view of the analysis. First, parameters
specifying the device--the position-space grid, electrostatic potential,
conduction-band discontinuities, effective masses, and dielectric constants--
must be read in. Next, by injecting electrons from each contact from a
mesh of k, values, the total electron and current densities can be
determined. Finally, if a self-consistent solution is desired, the Poisson
equation can be solved for a corrected electrostatic potential, and iteration
between solutions for both electron density and electrostatic potential can
be performed. In the process of implementing these calculations, however,
several difficulties arise. One example, discussed in section 2.2.1.1, is that
elements of a transfer matrix can become unbounded for tunneling electrons.
The fdllowing sections address some details of a numerical implementation,
emphasizing serious concerns for the proper integration of the wavefunction
magnitude.

3.1 Numerical Integration Concerns

The electron and current densities can be determined by integrating the
magnitude of the wavefunction, as explained in Chapter 2. Relevant
integration formulas, for electrons injected from the left contact, are
repeated here, for convenience:

© dk
0'7(a) = [ — | Y l? (K,

027r

—qh % dk .
3= S T ) ()
m, ¢ m




Figure 3.1
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where

T (k,) = I Wotr(L) 12

(

Since the wavefunction must be determined numerically for a given value of
k,, the above integrations involve the specification of some finite mesh of k,

values. A simple approach would be a uniform mesh of wavevectors k,, with
an application of the Trapazoidal rule or Simpson’s rule, to account for
integration. Such an approach, however, would fail miserably in certain
devices; specifically, resonant tunneling devices offer the greatest challenge
for numerical integration, because resonant peaks of the wavefunction
within the well rvegion_can be difficult to resolve.

Figure 3.2 underscores the importance of this concern, with a plot of
the wavefunction magnitude versus position and k,, for a particular resonant
tunneling device. The quantity log,o|o(k, )| kT 2] plotted is that used in

the integration for electron density, presented on a logarithmic scale so that
all features are shown clearly. It represents the probability of finding an
electron, with a particular wavevector, at a particular position, weighted by
the transverse integration of Fermi-Dirac statistics. Electrons, injected from
the right-hand contact, are largely reflected at low energies, (small k,),
setting up patterns of standing waves. At the resonant energy, however, the
wavefunction peaks sharply in the well region, and a small ridge of
transmitted electrons can be seen extending to the left contact. Because
this peak provides the dominant contribution to electron density in the well
region, a uniform mesh of wavevectors k, would have to be sufficiently fine
to resolve the resonant peak. Since the peak could be arbitrarily narrow
with respect to k,, a criterion for “sufficiently fine” is difficult to establish.
Moreover, a fine mesh of wavevectors is required only for values of k, near
the resonance. Segmenting the wavevector space into a series of uniform
meshes, fine meshes for wavevectors near a resonance, and coarse meshes
elsewhere, might seem to be the solution; however, variations in the
electrostatic potential (e.g., by iterating for a self-consistent solution) aflect
the energy at which resonances occur. Therefore, a proper integration
requires the ability to identify and resolve all peaks in the wavefunction
magnitude, regardless of device specifics.
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3.1.1 Isolating Extrema in Reciprocal Space

In light of the preceeding discussion, it is necessary to determine a
method of isolating the incident wavevector k, for which a maximum occurs
in the wavefunction magnitude. Consider the reduced Schrodinger equation,
in an interval n of constant potential and constant effective mass:

.Qf_. 200 =0
322 ¢n + ﬂnz/)n - (3‘1)

where the wavevector f;, at a position z = z,, is understood as

*

2m,
183 = " 12

E, + E;

1)
- ] EC,D] (3.2)

n
Taking the derivative with respect to kz, we obtain:

0

3.3
Note that the derivative of the wavevector ﬂn can be simplified:
* |32y 2

O po_ 8 | 2m Tk, |

= ~ +E(1—-1/y) -

6kz ﬂn Bkz T 12 ; + t( /'711) EC,n»

9 . | o

= 2 k, 3.4

where the identity E, = hlk 2 /2m* has been invoked. Upon substituting this
result back into equation 3.3, and multlplymg through by the complex
conjugate of the wavefunction '/)n, we obtain:

by w +B;

atly = | - (38)

n

ak 52

A similar procedure can be applied to the complex conjugate of equation 3.1,
leading to the result:

0
“dk 92

‘n ak wn =0 (3'6)

Note that ﬁn is a real quantity, and is therefore invariant under complex
conjugation. The sum of equations 3.5 and 3.6 can be written as:
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+ 0 32
' 9k, Oz?

Do+ Bl (ot + kit =0 (8)

& ak a 2
The condition for extrema in wavevector space is A(t,,)/0k, = 0, which
cancels one term in the equation above. Assuming the magnitude of the
wavefunction is not zero, the following relationship holds when a extremum
of the wavefunction magnitude is found:

1

_ x 0 2 __8__ 9 %
kz - 4'Yn¢;"/)n 'Iwbn 3kz (ﬁn¢n) + wn Bkz (ﬂn¢n)] (3'8)

‘Note that an extremum in wavevector space could be found simultaneously

at several points in position space. Hence, an evalution of equation 3.8
should be carried out at all relevant points in position space. For the
calculation of current density, the relevant points are at the left and right
contacts; for the calculation of electron density, all points in position space
could be relevant. '

Equation 3.8 will be satisfied exactly by incident wavevectors k,
producing an extremum, in an interval n in position space; for incident
‘wavevectors near an extremum, we define a predicted wavevector k;,‘,'in an
interval n:

0 1
5 = 4yt

When the incident wavevector k, nears an extremum for a particular

(B2 + gy 2 (6242) (39)

interval in position space, the ratio k,‘,‘/kz will tend to unity. In the course
of stepping through wavevectors k, the ratio k;,’/kz can be evaluated
numerically, by approximating the derivative with respect to k,. When this
ratio nears unity, the corresponding wavefunction extremum can be resolved.
A clear example of this type of calculation is provided by electrons incident
on an infinite potential wall from a region. of constant potential and
constant effective mass. In this example, the total reflection of electrons
produces standing waves, of the form:

%z(z) — ei_k,z _ e—ikzz
Y1) = 2(1 — cos2k,z)

. . * .
The wavefunction magnitude 1 ¥ reaches an extremum when 2k,z = m7, for

any integer m. In the framework of the present analysis, the ratio kp/kz is:
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k 1 :

P .
— = 1 — cos2k,z)- k .
k (1 = coszh.a) [( cos2k,z) + 4z ,s1n2k,z] (3.10)

which is unity when 2k,z = mm, for odd integers m, corresponding to the
maxima of the wavefunction magnitude. For the minima, the wavefunction
magnitude is zero, so the ratio k,/k, becomes unbounded. Note that, for
incident wavevectors slightly on either side of a maximum, the ratio kp/kz
yields values on either side of unity. The wavevector corresponding exactly
to the maximum can then be found by a linear interpolation between the
two ratios surroﬁnding unity.

Of course, in an application of the above analysis, the steps in
wavevector space must be small, relative to the distance between maxima.
The remaining task is to define a suitable increment for the incident
wavevector, k,. Returning to the example of an infinite potential wall, we
find that extrema are separated by 7/2z, in wavevector space; in this case,
the increment between incident wavevectors should be a fraction of this
separation. In a simulated device, potential steps will have a finite
magnitude. For small incident wavevectors, however, a large potential step
would appear infinite, and electrons would experience strong reflection. On
the other hand, small potential steps would seem insignificant to electrons
incident with a large wavevector, and reflection would be neglegible. These
two extremes define a range of situations encountered in device analysis.
The case of strong reflection, causing peaks in the wavefunction
- characteristic of standing waves, is the case of interest; with little reflection,
the wavefunction magnitude is nearly constant. Therefore, a conservative
estimate for the wavevector increment can be obtained by considering the
case of an infinite potential wall. At a distance L from the potential wall in
position space, extrema are separated in wavevector space by:

_ T
Eo9L

For an arbitrary device, the length an electron must travel before

Ak

(3.11)

experiencing reflection could be the length of the device, assuming the only
reflecting interface is near one of the contacts. If the length L in equation
3.11 is taken as the length of the device, this relationship provides the
desired estimate of the wavevector increment. Of course, a better resolution
of the wavefunction--at the expense of execution time--could be obtained, by
taking a fraction of equation 3.11 as the wavevector increment.
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.

'3.1.2 Gaussian Quadrature with Legendre Polynomials

Once the maxima of the wavefunction magnitude have been resolved,
numerical integration can be performed. Intervals of wavevector space
between maxima could be integrated with a number of numerical methods;
of these, Gaussian quadrature (35| is the most attractive prospect.
Considering the burden of iterating for a self-consistent solution, the number
of wavefunction evaluations must be kept to a minimum. Gaussian
quadrature allows for an extremely high-order approximation, with relatively
few function evaluations. A set of Legendre polynomials is used to
interpolate between points of a non-uniform mesh. Each mesh point is a
zero of a Legendre polynomial, mapped into the space of integration.
Specifically, the integral of any function f(x) can be approximated as: |

Xa

I 1( x) dx = 2 ;xl Izn) w; f(x;) (3.12)

X; i=1
with the transformation,
Xy + X3 X9 — X3
2 2

& | | 4(3-‘13)

X; =

where & are the zeroes of a Legendre polynomial of order m, and w; are
function weights; both zi, and w; are determined from a detailed derivation,
and results are tabulated in many numerical analysis texts [35]. Using a
Legendre polynomial of order m in equation 3.12, the method is exact for all
_polynomial integrands of degree less than 2m. Estimates of error in this
approximation involve high-order derivates of the function f(x). For this

- reason, practical error estimates are obtained by comparison of integration
results for a number of different orders m. In general, caution should be
used in applying Gaussian quadrature to a function which oscillates rapidly,
or which becomes singular at any point. In the interval of wavevector space
between maxima, however, the wavefunction is well behaved; Gaussian
quadrature can be applied with confidence.

3.2 Iteration For a Self-Consistent Solution

For any arbitrary device, there is no guarantee that the process of
iteration between solutions for electron density and electrostatic potential

 will converge. Suppose, as an illustration, an initial guess of the

electrostatic potential is taken as zero, throughout a device. In the lightly
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doped regions, a net negative charge would appear, after solution for the
electron density. Solution of the Poisson equation (equation 2.31) would
dictate that the electrostatic potential would have a positive curvature in
this region; the corresponding conduction-band profile would have a negative
curvature. Hence, the conduction-band profile would float upward in énergy,
in a region of negative charge. Upon solving again for the electron density,
the negative charge previously observed in lightly doped regions would be
reduced. If the changes in electrostatic potential and electron density from
iteration to iteration are small, the process will convérge. To insure that
changes are small between iterations, a method of under-relaxéd‘ iteration is
often used. In this method, only a small fraction of the corrected
electrostatic potential is added to the previous solution:

$i+1)(z) = dl)(z) + o P(2)

Here, §>(i)(z) is the electrostatic potential, ﬁsed in an iteration 1 to compute
the electron density; the corrected electrostatic potential ¢(z) is the actual
solution to the Poisson equation; the relaxation constant « is a fraction
chosen to force convergence. Although convergence can be achieved with
this method, the process requires a sizable number of iterations. Moreover,
a correct choice of « involves considerable guesswork.

An alternate method, used for the calculations in Chapter 4, involves
the solution of a non-linear Poisson equation. The computed electron
density can be modeled in the Poisson equation with a Boltzmann factor:

4 e(z)-iq’(z) = —q [N]')+ — Ny — ner(q)(z)-F"'(z))/kBT] (3.14)
dz dz ‘
where the parameter F acts like a quasi-Fermi level for electrons: -
, kgT (i) ,
F(z) = 9l)(z) — —2— 1 | 2-2) ] ‘ (3.15)
q Do

Given an electrostatic potential ®()(z) and the electron density n)(z)
computed from it, the parameter F can be calculated at each position-space
node, as shown above. A new solution for electrostatic potential ¢(i+l)(z) is
‘then obtained from equation 3.14. Since the electron density is modeled as a
function of the potential, no relaxation criterion is necessary; interactions
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between the electron density and the electrostatic potential are
approximately accounted for. Although a solution of equation 3.14 is more
complicated [36], convergence can be obtained in relatively few iterations.
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CHAPTER 4
EXAMPLE CALCULATIONS:
RESONANT TUNNELING DEVICES

The machinery developed in the preceding chapters can be applied to
any one-dimensional semiconductor device. Resonant tunneling devices,
exhibiting transport properties of a quantum mechanical origin, provide
particularly interesting results. Of the many devices studied experimentally
[4-11], we have chosen to examine the resonant tunneling diode reported by
Ray et. al. [10], since its structure emphasizes the importance of a self-
consistent calculation. The device, pictured in figure 4.1, was fabricated by
metalorganic chemical vapor deposition (MOCVD), with two Al ,sGagssAs
© barriers surrounding a GaAs potential well. Contacts are heavily doped
(2x1018cm'“3) GaAs, separated from the resonant tunneling region by
undoped GaAs spacer layers. The inclusion of spacer layers has several
advantages. First, the layers tend to reduce the migration of impurities
from the contacts to the resonant tunneling region, thereby reducing
impurity scattering. Second, a greater degree of symmetry in the
conduction-band profile is maintained, since an applied bias is dropped
across a longer, undoped region. As Ricco and Azbel pointed out (13],
asymmetry in the conduction-band profile degrades the peak in resonant
transmission, reducing the resonant tunneling effect. Finally, the presence of
spacer layers pronounces the upward shift of the conduction-band profile in
the undoped region, reducing the component of thermionic emission current.
This upward shift also has a profound influence on the current-voltage
relationship, which is investigated below.

To clearly illustrate the effects of space-charge in the analysis, results
are contrasted for solutions with and without sélf—consistency. In the latter
approach, hereafter referred to as a “flatband” analysis, space-charge effects
are completely neglected, and the electrostatic potential is taken as zero in
equilibrium; the application of bias appears in the conduction-band profile as

linear voltage drops across lightly doped regions. A self-consistent analysis,
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however, allows for iteration beyond the flatband solution, accounting for
the effects of space-charge. In the following sections, two structures of the
type shown in figure 4.1 are simulated at room temperature (300° K)--one
with 50 A spacer layers, and the other with 500 A spacer layers.

4.1 Equilibrium Electrostatics

Figure 4.2 presents the equilibrium conduction-band profiles, for both
self-consistent and flatband analyses, for the device of figure 4.1 with 50 A
spacer layers. The consideration of space-charge leads to an upward shift in
the undoped region of the conduction-band profile. Band—bendmg is
expected, since the presence of electrons creates a negative charge in the
undoped region, causing the conduction-band edge to float upward in energy.
A shift of the conduction-band edge, in turn, leads to an upward shift in all
quasi-bound state energies. For simplicity, only the first quasi-bound state
of each analysis is shown in figure 4.2. As explained in Chapter 1, electrons
incident at a resonant energy are multiply reflected between the two

o potentxal barriers, creating a significant electron density within the quantum

well. This density, plctured in figure 4.3 for both flatband and self-
consistent analyses, is smaller for the self-consistent calculation. Since
space-charge effects shift all of the quasi-bound states to higher energies,
fewer electrons are available to populate the well. Of course, electron
density drops rapidly within the potential barriers, as expected classically
for a wide bandgap material.

As the length of the spacer layers is increased, the effects of space-
charge become more pronounced; from a classical viewpoint, in equilibrium,
the Fermi level of intrinsic GaAs must align with that of the heavily doped
contacts. Consequently, a larger upward shift in the conduction-band edge
can be observed for the device of figure 4.1, with 500 A spacer layers.
Equilibrium conduction-band profiles and electron densities are presented in
figures 4.4 and 4.5, respectively. Again, a large electron density is formed
within the quantum well, although the consideration of space-charge greatly’
reduces the peak density. Since band-bending in this case extends well
beyond the double barrier region, electron density is decreased within the
spacer layers. It is apparent that space-charge effects play a significant role
in the equilibrium solution; an even greater emphasis on the importance of
self-consistency is established in the following section.
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4.2 Curr'ent-Voltag.e Relationships

Under the application of bias, resonant tunneling devices exhibit
negative differential resistance (NDR). ‘The origin of this phenomenon was
explained in section 1.1.2 as a result of conservation of energy and
transverse momentum. As an applied bias is increased, more and more
electrons are available for tunneling. Current reaches a maximum, then
drops sharply when the quasi-bound state falls below the conduction-band
edge of the supplying contact. Therefore, the bias for which NDR is
observed depends upon the height of the first quasi-bound state above the
conduction-band edge in the supplying contact. Assuming the potential
drop across the structure is approximately linear, a bias corresponding to
approximately twice this height is required for the onset of NDR:

2 v
VNDR = _(I(El - EC,contact)

From the results presented in figure 4.2, NDR should be observed at a bias
of Vypg = 0.262 V for the self-consistent calculation, and Vypr =~ 0.178 V,
for the flatband result. As shown in figure 4.6, a plot of the current-voltage
relationships for the device of figure 4.1 with 50 A spacer layers, these
estimates are quite close. This demonstrates one important consideration
for self-consistent solutions: Any variation in the quasi-bound state energies
appears twice as large in the translation of NDR along the voltage axis.

Returning to figure 4.6, we note that the inclusion of self-consistency
has broadened the NDR region. In the self-consistent calculation, current
density reaches a maximum when the quasi-bound state level is well above
the conduction-band edge in the contact. This is illustrated in figures 4.7
and 4.8, which present plots of the conduction-band profile at biases
corresponding to current maxima (points P and @ of figure 4.6). After the
maximum current is attained, a larger additional bias is required in the self-
consistent case to pull the resonant level below the conduction-band edge in
the contact, and reach the point of minimum current. The result is a
broadening of the self-consistent NDR region, compared to the flatband -
solution.

Finally, the peak current of the NDR region is reduced for the self-
consistent calculation. For small biases, fewer electrons are available at the
higher energies of self-consistent quasi-bound states to be transmitted across
the device. Near the onset of NDR, which occurs at a higher bias in the

self-consistent case, the transmission coefficient is severly degraded. Current
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Current—Voltage Characteristics
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is maximized when the product of a degrading transmission peak and an
increasing flux of incident electrons is maximized. As mentioned above, this
occurs when the quasi-bound state energy is well above the conduction-band
edge in the contact; therefore, current reaches a smaller maximum value in a
self-consistent calculation, relative to the flatband result.

Although the incdrpora‘tion of space-charge effects brings quantum
transport theory one step closer to experiment, meaningful comparison must
await a more precise knowledge of device parameters. Experimental
unknowns, such as nominal doping densities, interface and bulk charges, and
contact resistances, can significantly affect modeling efforts. The preceding
discussion, in particular, highlights the sensitivity of the current-voltage
relationship with respect to space-charge. Numerical simulations can still be
performed, however, demonstrating much of the physics of one-dimensional
devices.




58

| CHAPTER 5
SUMMARY AND CONCLUSIONS

5.1 Summary

A quantum mechanical description of carrier transport in one dimension
has been presehted. Electrons, injected from contacts in thermodynamic
equilibrium, propagate through an arbitrary device in accordance with the
Schrodinger equation. Two solution techniques, the methods of cascading
transfer matrices and scatter matrices, have been described to calculate the
electron wavefunction. Once the wavefunction has been determined,
macroscopic quantities of interest, such as electron density and current
density, can be calculated by summing contributions from all electrons. To
insure accurate integrations of the wavefunction magnitude, a method of
isolating extrema in wavevector space was developed. The determination of
electron and current densities can be applied to any conduction-band profile.
A self-consistent solution, however, requires iteration between calculations
for electron density and the electrostatic potential. Although the analysis is
computationally demanding, self-consistency is vital for a correct simulation.
Example calculations presented in Chapter 4 underscore its importance.

5.2 Conclusions

Much of the physics of quantum transport can be demonstrated with
the analysis presented; the simulation of resonant tunneling devices provided
in Chapter 4 is but one example. Two assumptions made to simplify the
analysis, however, limit its application. First, the magnitude of the
wavefunction was assumed to be weakly dependent on the transverse energy.
The integration over transverse momentum could then be performed
analytically. If the effective mass is constant in a device, this assumption is
not needed; the wavefunction in a homostructure is independent of the
transverse energy, if motion is constrained in one dimension only. For
material systems such as GaAs/AlGaAs, the variation of effective mass is
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small, and the assumption is reasonable. For devices composed of widely
different materials, however, the integration over transverse momentum
should be performed nuinerically, greatly increasing the execution time of a
simulation. Second, transport was assumed to be ballistic, so that scattering
events are infrequent and unimportant. Although this assumption could be
reasonable for short device geometries, or for experiments performed at
extremely low temperature, scattering in general is an integral part of
carrier transport. In the present analysis, for example, only electronic states
at energies above the conduction-band edge of a contact can be populated.
The introduction of scattering events would allow carriers to decay into
lower states. Moreover, the performance of many devices is deeply affected
by scattering processes. Negative differential resistance in resonant
tunneling devices is - degraded when multiply reflecting electrons lose
coherence; effective mass filtering relies on the broadening of carrier energy
due to collisions, to effectively localize holes. Although a description of
scattering is desirable, it is currently a topic of much research, and a proper
treatment must be deferred to future analyses. Despite these two limiting
assumptions, the transport theory developed in this thesis represents a first
step in the understanding of quantum phenomena. '
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