MEMS RESONATORS AS AN ENABLING TECHNOLOGY

Dana Weinstein

HybridMEMS Lab

Dept. of Electrical & Computer Engineering Purdue University

> NSAC Symposium April 12, 2019

THE BROAD REACH OF MEMS

We are in an era of *deep* penetration of MEMS products into everyday life

There are products everywhere

- Pressure sensors in your car & body
- Accelerometers, gyros
- Ink-jet print heads ۲
- Microphones

DLP projectors

D. Weinstein | NSAC

- TI DLP
- Etc.

stability

Mic, gyro, XL, **FBAR** filters

Automotive: XL, gyro, pressure sensors, mm-wave imaging?

Sensors galore,

health monitoring

HP inkjet printing (and now XLs)

THE INTERNET OF THINGS (IOT)

GHZ FREQUENCY RESONATORS

- Timing (oscillators)
- Wireless communication (frequency generation, filters, mixing, etc)
- o Sensors (high Q = high SNR)

Resonator		f _{res} λ/2	f _{res} λ/2	Comments
air acoustic cavity		1 GHz 170 nm	60 GHz 	too small low-Q
EM cavity		1 GHz 15 cm	60 GHz 2.5 mm	too large @ 1GHz too \$\$ @ 60GHz
silicon acoustic resonator		1 GHz 4.3 μm	60 GHz 70 nm	perfect for µfabrication high-Q

AIR-GAP MEMS RESONATORS

Comb-drive resonator, Tang, Howe 1989

ST Microelectronics gyroscope

COMB DRIVE ACTUATOR

JE

ERSITY

UNI

DIELECTRIC TRANSDUCTION

Drawbacks of air-gap transducers

- Fabrication complexity for release step
- Low yield
 - Stiction
 - Particulates in gap
- Costly packaging

Our approach: dielectric film transducers

- No stiction or particulate failure
- Easier fabrication and integration
- Improved performance at GHz frequencies

Weinstein, IEDM 2007

DIELECTRIC TRANSDUCTION

D. Weinstein | NSAC

PHONONIC CRYSTAL BASED RBTS

- 1st Phononic Crystals (PnCs) in a standard CMOS BEOL process
- Vertical acoustic confinement
- High-Q GHz-frequencies MEMS resonators
- No post-processing
- No special-packaging
- GF 32SOI:
 - High-fT
 - BOX: RF-feedthrough

D. Weinstein | NSAC

B. Bahr, R. Marathe, D. Weinstein IEEE IFCS14

PNC WAVEGUIDED MODES

Quality factors ranging from 8000 to 15000

- Improved spurious mode suppression
 - Poor transduction efficiency resulting in low g_{em} (nS)

RESONANT FIN TRANSISTORS

Resonators fabricated in GF 14nm FinFET process (14LPP)

• Footprint: 300nm x 7um

Compared to IBM 32nm RBT

- 10x higher frequency
- 100x higher g_{mech}

B. Bahr, Y. He, D. Weinstein, ISSCC'18

D. Weinstein | NSAC

FERROELECTRIC TRANSDUCTION

Ferroelectric materials are being introduced in planar CMOS technologies as **FeFETs and FeCAPs** for RAM applications. Piezoelectric

- \rightarrow generate high stresses for driving
- → High readout sensitivity Texas Instruments (TI) FeCAPs process for acoustic waveguiding

GALLIUM NITRIDE TECHNOLOGY

High Electron Mobility Transistors

- high charge density (10¹³ cm⁻²)
- high mobility (2000 cm²/V s)

High Power Applications

- wide bandgap (3.4 eV)
- high breakdown field (3.3 MV/cm)

Monolithic Microwave ICs

high saturation velocity (3 10⁷ cm/s)

Electromechanical Benefits

- PE Coupling: k_T^2 of 2%
- Low acoustic loss (f.Q > 1e13 at 1 GHz in GaN-on-Si)
- Intimate integration with HEMTs/MMIC technology
- Use of 2DEG for tuning and programmability

MEMS resonators in GaN MMICs

- First DC-switchable piezoelectric transducer
- Depletes transduction capacitor in the "OFF" state by >10x, ideal for filter banks loading an antenna
- 20 dB suppression by each of drive or sense transducers Popa, Weinstein, Transducers '13

Mechanically coupled resonators with PE drive and HEMT sensing

- 10x improvement in broadband floor
- 100x improvement in SNR relative to previous designs Popa, Weinstein, Hilton Head '14

Contour mode resonators to achieve multiple frequencies on a single chip

- Highest f.Q product in GaN contour mode resonators
- Highest keff2 in GaN contour mode resonators

Phononic crystals used to define frequency-dependent boundary conditions

- Achieved spurious-free frequency range over 750 MHz
- Power handling: IIP3>27dBm due to improved thermal paths

Wang, Weinstein, Hilton Head '14

- **RF FILTERS**
 - Small footprint RF lattice filters using Lamb mode resonators

Δf (%)	f (GHz)	BW _{3dB} (%)	IL (dB)
0.10	1.015	0.19	11.6
0.15	1.015	0.11	9.38
0.25	1.015	0.28	8.36
0.30	1.015	0.38	7.65
0.4	1.014	0.39	5.16

GAN MEMS OSCILLATORS

- First demonstration of monolithic MEMS oscillators in GaN.
- Pierce and Colpitts topologies implemented with Lamb-mode resonators in GaN at 1GHz.
- Passive and active devices in DAHI GaN HEMT+MEMS technology on 111 Si.

NON-BOOLEAN INFORMATION PROCESSING

Coupled arrays of Resonant Body Oscillators

Phase patterns in nonlinear coupled oscillator arrays.

Efficient processing/memory for imaging and other large-scale systems

Recognition

ACOUSTOELECTRIC EFFECT

- o Energy exchange between free carriers and elastic wave in piezoelectric semiconductor
- Wave can be **attenuated** or **amplified** by DC electric field
- First posited by Parmenter in 1953

Pedros, Bougrioua et al, APL 96, 123505 (2010)

Increased Q in GaN FBAR

Gokahle, Rais-Zadeh, Nat. Sci. Rep 4,5617 (2014)

PURDUE D. Weinstein | NSAC

SAW generation by HEMT

Shao, Pipe et al, APL 99, 243507 (2011)

NON-RECIPROCAL DEVICES

o Acoustoelectric effect is inherently non-reciprocal

S. Ghosh et al., Transducers'17

- o Traveling wave amplifiers, isolators, circulators, correlators
- Topological insulators, topomechanics for quantum computing

NICKELATE ACTUATORS

Voltage-driven transition. Ions diffuse into or out of the Nickelate to induce the MIT with an applied bias voltage, which need not be maintained on the electrode once the transition occurs.

Insulator-to-Metal transition temperature shown experimentally below room temperature for NNO.

Pd, top electrode, catalyst of H₂ split into protons and electrons

BYZ, dielectric layer to provide electric field to drive protons. Store protons as well

NNO, provide strain during proton doping

ITO, bottom electrode, resistant to rigorous annealing process of NNO

NOMAD: UNTETHERED MICROROBOTS

UNIVERSITY

HYBRIDMEMS LAB

