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MLforHPDC/HPC (ML for Systems) in detall

* MLforHPDC/HPC can be further subdivided into several categories:

 MLafterHPC: ML analyzing results of HPC as in trajectory analysis and
structure identification in biomolecular simulations. Well established and
successful

o MLControl-Using simulations (with HPC) and ML in control of experiments and
in objective driven computational campaigns. Here simulation surrogates are
very valuable to allow real-time predictions.

 MILAutotuning: Using ML to configure (autotune) ML or HPC simulations.

o Ml aroundHPC: Using ML to learn from simulations and produce learned
surrogates for the simulations or parts of simulations. The same ML wrapper
can also learn configurations as well as results. Most Important.
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Status of MLforHPC Research
ML for HPDC or Systems

http://dsc.soic.indiana.edu/publications/Learning%20EverywhereResource.pdf @
111 Citations (mainly 2017 or later) with very short comments

MLaroundHPC/MLAutotuning: not much on Computer Science or Partial Differential

equations

Particle Dynamics: largest component with, smart sampling, effective potentials,
“Computation Results from Computation defining Parameters” with “simple” deep learning
replacing sophisticated dimension reduction; material science properties very active

e Give examples from nanoparticle simulations
Agent-based Simulations in networked systems or virtual tissues. Perhaps most promising
as inevitably data driven as no fundamental equations for cells, cars, people, bacteria

* Review plan to develop new approach to computational systems biology -- simulate
organisms based on models for cell
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http://dsc.soic.indiana.edu/publications/Learning%20EverywhereResource.pdf

9 MLaroundHPC Scenarios
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MLAutoTuningHPC: Learning Configurations

* This is classic Autotuning and one
optimizes some mix of performance and

Hardware and software

quality of results with the learning configurations
network inputting the configuration e =
parameters of the computation. Dynamic = =3

AutoTuning |33
« This includes initiak-vadtes and also j o)
dynamic-cheices such as block sizes for

cache use, variable step sizes in space
and time.

* |t can also include discrete choices as to
the type of solver to be used. MLAutoTuningHPC: Learning Configurations
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MLAutotunedHPC. Machine Learning for Parameter Auto-tuning in Molecular Dynamics Simulations:

Efficient Dynamics of lons near Polarizable Nanoparticles (NPs)

* Integration of machine learning (ML) methods for parameter
prediction for MD simulations by demonstrating how they were
realized in MD simulations of ions near polarizable NPs.

 Note ML used at start and end of simulation blocks
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Key characteristics of simulated
system showing greater stability
for ML enabled adaptive
approach.

Computational Steps

01
Results for Nanosimulation, .
5 -01 3
. = E
MLAutOtunlng E 02 “-’_Liigg .. ".: o
5 | g \ ) Hnakpiie 3
g 03} il ™
:n.'E ) A e B o5 1 15 Z 25 8 35 4 45
s‘ 0.4 F =T > b gy .'_.—-*‘J S
b4 . .
Auto-tuning of parameters o5t e
generated accurate dynamics of osl € P e
ions for 10 million steps while 0 o5 T 15 5 25 & a5 4 4
improving the stability. Simulation Time (ns) ~
A v . ' .
Integrated with ML-enhanced B A v 2,
) ] 6| o003 )""\,/T/‘ v o /f |
framework with hybrid I i o A
o gooos /N @ o Py P
OpenMP/MPI o 5o AN Pl /,
g B y
0.0015 |‘-J ' 4 -
. ':8 41 ooorgme = == /V/ - "
Maximum Speedup of 3 from B o osx10®  x10®  isxicP  2xa0® ¥ o
. . = ~ A
MLAutoTuning and a maximum g O cecpustow P2 ]
2z e=2v=2 -9 ¥ P T
speedup of 600 from the f—é 8 | ot ot K P
- - P ’ - - » & - =
combination of ML and parallel @ | cw=bOv=1y ,};’I-- e \
. 1 ‘ -~ ]
computing. P
puting e o
0 5x10° 1x10° 1.5x10°% 2108

Quality of simulation measured
by time simulated per step with
increasing use of ML
enhancements. (Larger is
better).

Inset is timestep used

PERSPECTIVES ON HIGH-PERFORMANCE COMPUTING IN A BIG DATA WORLD



MLAutoTuningHPC: Smart Ensembles

. Here we choose the best set of
parameters to achieve some
computation goal

*  Such as providing the most
efficient training set with defining

Hello
parameters spread well over the
relevant phase space.

o il

ol

Smart Ensembles
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MLAutoTuningHPC: Learning Model Setups
from Observational Data

OBSERVATIONAL DATA

*  Seen when simulation set up as a
set of agents.

*  Tuning agent (model) parameters
to optimize agent outputs to
available empirical data presents Fit Data
one of the greatest challenges in to Model
model construction.

Learning Model Setups from Observational Data
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MLforHPC Simulation Surrogates

MLaroundHPC: Learning Outputs from Inputs:
a) Computation Results from Computation defining Parameters

*  Here one just feeds in a modest
number of meta-parameters that
the define the problem and learn
a modest number of calculated
answers.

»  This presumably requires fewer
training samples than “fields
from fields” and is main use so
far

QO - Initial States

—
LOOP OVER - | SUMMARY PARAMETERS

INPUT ]
PARAMETERS & ~ (EG: AVERAGES,
' EXTREMES)

Learning Outputs from Inputs: Computation Results from Computation defining Parameters

Operationally same as SimulationTrainedML but with a different goal: In
SimulationTrainedML the simulations are performed to directly train an Al system rather
than the Al system being added to learn a simulation.
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MLaroundHPC: ML for High Performance Surrogates of nanosimulations

« An example of Learning Outputs from Inputs:
Computation Results from Computation defining SHpEApRCon
Parameters :

Stabilization of colloids

 Employed to extract the ionic structure in electrolyte
solutions confined by planar and spherical surfaces.

«  Written with C++ and accelerated with hybrid MPI- e .
OpenMP.

lon channels

 MLaroundHPC successfully learns desired features
associated with the output ionic density that are in
excellent agreement with the results from explicit
molecular dynamics simulations.

*  Will be deployed on nanoHUB for e . Al i, S
education (an attractive use of surrogates)
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ANN for Regression

* ANN was trained to predict three
continuous variables; Contact
density p. , mid-point (center of the
slit) density p,, , and peak density p,,

 TensorFlow, Keras and Sklearn
libraries were used in the
implementation

« Adam optimizer, xavier normal
distribution, mean square loss
function, dropout regularization.

« Dataset having 6,864 simulation
configurations was created for training
and testing (0.7:0.3) the ML model.

* Note learning network quite small

NanoConfinement
Framework

(Input/Output Data)

____________

Preprojcessing

17 ANN

No Activation

Outputs

I 1
I |
: Min-Max !
| | Normalization|
I 1
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Parameter Prediction in Nanosimulation

* ANN based regression model predicted Contact density p. , mid-point (center of the slit) density p,, ,
and peak density p, accurately with a success rate of 95:52% (MSE ~ 0:0000718), 92:07% (MSE ~
0:0002293), and 94.78% (MSE ~ 0:0002306) respectively, easily outperforming other non-linear

regression models

* Success means within error bars (2 sigma) of Molecular Dynamics Simulations

Model Contact Density ||Midpoint Density Peak Density
Success %| MSE ||Success %| MSE || Success %| MSE
4| Polynomial 61.04 (0.0129300|| 60.84 ]0.0187700|| 61.87 (0.0100400
Kernel-Ridge 78.86  [0.0030900( 76.57 (0.0041200( 75.93 [0.0049800
Support Vector| 80.11 [0.0012700 79.55 ]0.0024900( 81.98 [0.0010600
Decision Tree 68.44 [0.0084600 64.54 [0.0094900 62.47 10.0110700
v |Random Forest| 74.15 [0.0045700 70.85 10.0078900 75.09 10.0040800
ANN based 95.52 10.0000718/| 92.07 0.0002293|| 94.78 0.0002306
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Accuracy comparison between ML predictions

and MD simulation results
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Rapid access to trendlines using ML Surrogates
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ML predictions are within the error bars generated via MD simulations (1%).
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Speedup of MLaroundHPC

¢ Tgeqls sequential time

*  Tyain time for a (parallel) simulation used in training ML Ny.in IS 7K to 16K in our
*  Tieam IS time per point to run machine learning work

*  Tiookup 1S time to run inference per instance

*  Nain NUumMber of training samples

*  Nigokup NUMber of results looked up

Tseq (N lookup + N t'r'ain)

Effective Speedup S =
CZ_'ln:)n:)k’u,j_oj\fla:){)k'u,p + (Tt’rain + ,Tlea,rn)Nt'rain

—

* Becomes T /Tyain if ML not used

«  Becomes T /T ookyp (10° faster in our case) if inference dominates (will overcome end of
Moore’s law and win the race to zettascale)

* Another factor as inferences uses one core; parallel simulation 128 cores

e Strong scaling as no need to parallelize more than effective number of nodes
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MLforHPC Simulation Surrogates
MLaroundHPC: b) Learning Outputs from Inputs:

Fields from Fields QO - Initial States @ - Final States
Here one feeds in initial O % 3.\0
conditions and the neural O) (B\ &O D.
networ!< !garns th(.a result /, \QR o o ‘T)Q
where initial and final results —= /r ' ©

: I b= — A _
are fields ; = g. L= ’ po/‘ C‘m o
There is also c) Learning O ,;/' 0. A }a, 9
Outputs from Inputs: o ," b QO $

output fields from c\O\O ? & 8

Computation defining
Parameters combining a)
and b)

Learning Outputs from Inputs: Fields from Fields
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How does one do this for case c) ?

» If you are learning particular output features (as in Computation Results from Computation defining
Parameters), then a simple (not necessarily deep) neural net suffices

* If you want to learn the output fields (from either input fields or input Computation defining Parameters),
then a more sophisticated approach is appropriate

* Recent paper “Massive computational acceleration by using neural networks to emulate mechanism
based biological models” uses 501 LSTM units to represent a ere-dimensional-grid of values which is
output of a two-dimensional gene circuit simulation which only depends on radius.

Yn N1 Yo
* Note LSTM models sequences and one gets t t t
Peak
« Sequences in either time (usual LSTM application) or space Ualpe | | BT =*o] BTV [+] BIM;

« The ML representation allowed a much richer parameter \/
sweep showing features not in training set
Fully Connected Layer

« Performance improved by factor 30,000 4

Inputs
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Massive computational
acceleration by using neural
networks to emulate
mechanism based biological
models
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Figure S3. Comparison between predicted distributions generated by neural network and
distributions generated by mechanism-based model. These examples are randomly selected from

the training dataset.
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