Nanosphere Electrostatics Lab

By Kadupitiya Kadupitige, Nicholas Brunk, Sohile Ali, Fox, Geoffrey C., Vikram Jadhao

INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Introduction

• Accurate knowledge of *ionic structure & dynamics* is critical to study nanoparticle dynamics

- Nanoparticles are polarized in most solvents
- Simulating the dynamics of ions near polarizable nanoparticles is challenging: Need equation at every timestep

UNDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Traditional approach

W INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

ML-based selection and auto-tuning of virtual parameters in CPMD

- Previously, tedious process of trial and error is involved to find the virtual parameters in CPMD
- We apply ML to select and auto-tune the virtual parameters in CPMD method

U INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Nanosphere Electrostatics Lab

- Frontend: Jupyter
- Backend: C++
- OpenMP/MPI Hybrid parallelized
- Open source on github

Input parameters

- 1. Dielectric const inside NP: (2, 78.5)
- 2. Dielectric const outside NP: (78.5)
- 3. Salt concentration outside (M): (0)
- 4. Positive ion valency (e): (1, 2, 3)
- 5. Nanoparticle radius (nm): (2.6775)
- 6. Nanoparticle charge (e): (-60)

Outputs

- 1. Positive/Negative density profiles
- 2. Energy conservation
- 3. Movie file of the simulation

https://nanohub.org/tools/nse

Demo of Nanosphere Electrostatics Lab

… ⊠ ☆

II\ □ **③** T ❷ Ξ

Add Modules

JCS Kadupitiya

Public Profile :: Your profile is currently public.

۲

Dashboard
Profile
Account

CollectionsContributions

CoursesGroups

I All Projects + New Project	Workspace	~	Recent Favorites	All Tools
Nano Confinement		j	electro	
By me manager	October 02, 2019 @ 1	2:04am) Terminate	Dualfoil.py: Porous Electrochemistry for Rechargeable Batteries	
	Functor Nataback with approach	51 3	Electrochemical Simulation	•
		5.1	ElectroMat	
	🦾 Ions in Nanoconfinement	>	Electron Magnetic Resonance (EMR) in	
	Nanosphere Electrostatics Lab	>	Nanoparticles	
	Nanosphere Electrostatics Lab (12)	2:22 am)	Electrostatic Properties Simulatic WCam Material Devices	-
	Storage (manage)		Illinois Solid State Electronic Dev	
RESOURCES	x	66% of 10GB	WHAT'S NEW MY INTERESTS	1
			[Add Interacts] My Interacts	117

.

З

Conclusion

- The Nanosphere Electrostatics Lab empowers users to simulate the self-assembly of ions near a spherically shaped nanoparticle and extract the effective electrostatic properties.
- In addition, the app enables the study of both salt-free (counterion only) and salty systems via the salt concentration parameter.
- The app was enhanced using a Hybrid MPI/OpenMP parallelization method as well as a machine learning approach designed to automate the evolution of the polarized charges.
- The app is being tested experimentally by measuring zeta potentials of NPs of different radius and bare charge under various ionic conditions; numerical validation has been performed via LAMMPS.

OL OF INFORMATICS, COMPUTING, AND ENGINEERING

Acknowledgements

Jadhao Group:

Vikram Jadhao Nicholas Brunk Lauren Nilsson Nasim Anousheh

Computing Resources: Big Red II NCN-hub

This work is supported by the National Science Foundation through Award 1720625.

Thank you!

U INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING