

THE UNIVERSITY of ADELAIDE

Institute for Photonics and Advanced Sensing

Towards Optical Quantum Information Processing in Atom-Filled Hollow-Core Photonic Crystal Fibres

<u>B. M. Sparkes</u>, J. Rowland, C. Perrella, J. P. Hedger, A. P. Hilton, P. S. Light, and A. N. Luiten

Outline

• Quantum Memory 101 – What? Why? Where do I get one?

- $\bullet \ High-Bandwidth \ Memory \ \ Hot \ stuff \ with \ warm \ atoms \ in \ fibre$
- Long Lifetime Memories in Fibres Cool Experiments with cold atoms in fibre

Institute for Photonics and Advanced Sensing, The University of Adelaide

• Efficient

• Noiseless

Why Do We Want One?

"[O]ne could characterise **quantum information processing** as the science of turning quantum conundrums into potentially useful applications" Gisin *et al*,Rev Mod Phys **74**,145,(2002)

• Quantum Key Distribution

• Quantum Computing

Quantum Networks – Many Shapes and Sizes

The Ideal Storage Medium?

Criteria:

- Large Absorption
- Stationary Absorbers
- Tight Transverse Confinement
- Robust
- Integrable with current infrastructure

Method:

How Are We Doing? Medium:

- Atomic Frequency Comb
 •Eff =35%
 •TBP = 1060 pulses / B'width = 5 GHz
- Raman Storage •Eff=30%

•TBP ~ 2500/B'width ~ 1.5 GHz

•Gradient Echo Memory •Eff=73,87,87% •TBP ~ 20/B'width ~ 1 MHz •ts > 1 ms

Hsiao *et al*,Phys Rev Lett **120**,183602 (2018). Longdell *et al*,Phys Rev Lett **95**,062601 (2005).

Amari *et al*,J Lumin.**130**,1579 (2010), Usmani *et al*,Nature Commun **1**,1 (2010), Bonarota *et al*,N J Phys **13**,013013 (2011).

Reim *et al*,Phys Rev Lett **107**,053603 (2011), Reim *et al*,Nature Photon **4**,218 (2010).

Hedges *et al*,Nature **465**,1052 (2010), Hosseini *et al*,Nature Commun **2**,174 (2011), Cho *et al*,Optica **3**,100 (2016).

Outline

• Quantum Memory 101 – What? Why? Where do I get one?

- $\bullet \ High-Bandwidth \ Memory \ \ Hot \ stuff \ with \ warm \ atoms \ in \ fibre$
- Long Lifetime Memories in Fibres Cool Experiments with cold atoms in fibre

The Precision Measurement Group

Jed Rowland

Prof Andre

Luiten

Institute for Photonics and Advanced Sensing

Off-Resonance Cascade Absorption (ORCA)

• High Bandwidth (>10 GHz) • No Noise • Short Storage Times • 5 ns in Cs (15% efficient) • 100 ns in Rb (25% efficient) • 100 ns in Rb (25% efficient)

- Increased Coupling Power
- Laser-Induced Atomic Desorption

Kaczmarek et al, Optics Letters 40,005582 (2015)

ORCA Improvements

- Increased Coupling Power
- Laser-Induced Atomic Desorption

Kaczmarek et al, Optics Letters 40,005582 (2015)

• Different Fibres Perrella *et al*, Phys. Rev. Applied 9,044001 (2017)

Outline

• Quantum Memory 101 – What? Why? Where do I get one?

• High-Bandwidth Memory – Hot stuff with warm atoms in fibre

• Long Lifetime Memories in Fibres – Cool Experiments with cold atoms in fibre

The Precision Measurement Group

Cold Atoms in Fibre

- Reduced Velocity (100 m/s \rightarrow mm/s)
- Increased Lifetime (100 ns →10 ms)

Cold Atoms in HCF - State of the Art

Institut für Angewandte Physik, Technische Universität Darmstadt

Institute for Photonics and Advanced Sensing, The University of Adelaide

Johannes Gutenberg-Universität

Cold Atoms in Fibre Set-Up

Institute for Photonics and Advanced Sensing, The University of Adelaide

Hilton *et al.*, Physical Review Applied **10**, 044034 (2018)

Cold Atoms in Fibre Loading

Institute for Photonics and Advanced Sensing, The University of Adelaide

Hilton et al., Physical Review Applied 10, 044034 (2018)

Cold Atoms in Fibre Absorption

Hilton *et al.*, Physical Review Applied **10**, 044034 (2018) $\frac{12}{22}$

Cold Atoms in Fibre Absorption

Hilton et al., Physical Review Applied 10, 044034 (2018)

Long-Lived Cold Atoms in Fibre?

Long-Lived Cold Atoms in Fibre?

Future Work: Efficient Cold Atom Quantum Memory

• Gradient Echo Memory – efficient (87%), noise-free, flexible

Warm Atoms (3)

Hosseini *et al*, Nature Physics 7,794 (2011); Nature 461,241 (2009)

Laser-Cooled

Hedges et al, Nature 465, 1052 (2010)

Hosseini et al, Nature Commun 2, 174 (2011)

Cho et al, Optica 3, 100 (2016)

100

120

34"

Future Work: Two-Photon Gate in QM

- Previous work: 10-12 rad/photon
- Hollow-core fibre: 106 improvementa/)
- Cold Atoms: 102 improvement
- Storage (500 ns): 102 improvement
- Expect 10 mrad/photon shifts
 - Sufficient for parity/phase gates

Hosseini *et al*,Light:Sci & App **1**,e40 (2012)

m_f=-

Future Work: Quantum Simulation with Photons

- Strongly-interaction stationary photonic qubits
- Benefits: Scalable, flexible and easy to read out

Conclusions

- Warm Atoms into Hollow-Core Fibres:
 - *GHz Bandwidth, Room Temperature*
 - ~50% efficiency
 - 20 ns coherence time (need to increase)
- Cold Atoms into Hollow-Core Fibres:
 - Large Absorption in Gaussian trap (OD ~ 600)
 - Now: Coherence Measurements
- Next Steps:
 - Quantum Memory (GEM) in Hollow Trap
 - Extreme Atom-Light Interactions
 - Quantum Simulations

Hilton et al., Physical Review Applied 10, 044034 (2018)

Thanks!

Australian Government

Australian Research Council

AUSTRALIAN-AMERICAN FULBRIGHT COMMISSION

E-mail: <u>Ben.sparkes@adelaide.edu.au</u>; Web: researchers.adelaide.edu.au/profile/ben.sparkes; Twitter: @SparkyQI ³²