Entanglement, discord and other quantum correlations

A. R. P. Rau, Physics \& Astronomy, Louisiana State Univ Entanglement, use in quantum information, decay and restoration;
Bell Inequalities; Entropic Inequalities;
Quantum Discord, entropic and geometric;
Calculations for 7-parameter X -states of two qubits;
X - and extended X -states, qubit-qudit or N qubits;
Geometrical generalization of Bloch Sphere to two-qubit states and their evolution : a decomposition of SU(N) analogous to that of $\operatorname{SU}(2)$, provides a minimal unitary operator useful in calculating discord
Dmitry Uskov, Sai Vinjanampathy, Mazhar Ali \& Gernot Alber

Kirkman's Schoolgirls and Quantum Spin Pairs
 A 175 year long thread through mathematics and physics

Combinatorics, Design theory, Coding theory, Latin Squares, SuDoKu, Finite Geometries, Experimental Statistics, Lie and Clifford algebras of multiple quantum spins, ...

A. R. P. Rau, J. Biosci. 34, 353 (2009)

Kirkman's schoolgirls, Pair of Qubits, Rainbow of four primary colors: Common Patterns and Designs
Different aspects of the number 15

$$
\begin{gathered}
3 \times 5 \\
2^{4}-1 \\
\text { Pascal: } 1+4+6+4+1 \\
\text { quadruple binary string } 1111
\end{gathered}
$$

Dirac gamma matrices four-V, T, A, P(seudo)
H atom's $\mathrm{O}(4,2)$:

$$
\vec{r}, \vec{p}, \vec{\ell}, \vec{A}, r, p^{2}, \vec{r} \cdot \vec{p}
$$

ARPR \& G Alber, J Phys B 50, 242001 (2017)

7 days of the week, a 7-dimensional subgroup of $\operatorname{SU}(4)$
John Paul Marceaux, LSU Honors Thesis 2018 designs in color and sound

Kirkman's Schoolgirl problem:

"15 young ladies in a school walk out three abreast for seven days in succession. It is required to arrange them daily, so that no two will walk twice abreast". W.S.B. Woolhouse, Lady's and Gentleman's Diary, Prize question 1733 (1844)

Solved by Rev. Thomas Kirkman, a Lancashire clergyman Lady's and Gentleman's Diary 147, 48 (1850) and Cambridge Dublin Math. J. 5, 255 (1850)

Designs, Balanced Incomplete Block Designs (BIB), Steiner Triple Systems: J. Steiner, J.Reine Angew.Math. 45,181 (1853);
F. Yates, Ann. Eugenics 7, 121 (1936),
R.A. Fisher, The Design of Experiments (1935).

Two sets, allot one's to the second's with specified conditions

First set of v symbols (varieties)
To be put into b blocks
Each block to have k symbols
Each symbol to occur in r different blocks
Every pair ($\mathrm{t}=2$) to occur together in λ blocks

$$
(v, b, r, k, \lambda) \text { design }
$$

Block design with $\mathrm{k}=3$: Triple Systems
Designs with $\lambda=1$: Steiner Systems $S(t, k, v)$
If $k=3$:
Steiner triple systems $S(2,3, v)$
Steiner triple systems exist iff $\mathrm{v}=1$ or $3 \bmod 6$ M. Reiss, J. Reine Angew. Math. 56, 326 (1859).

For any BIB: $\quad v r=b k, \lambda(v-1)=r(k-1)$
if triple system $k=3: r=\lambda(v-1) / 2, b=\lambda v(v-1) / 6$
BIB denoted $t-(v, k, \lambda)$ so that Steiner triple: $2-(v, 3,1)$
Kirkman: 2 - ($15,3,1$)
An even smaller Steiner triple is $2-(7,3,1)$
BIB is symmetrical if $v=b, r=k$ as above: $v=b=7, r=k=3$
Number and classification of Steiner triple systems becomes complicated with increasing v .

Points and lines in geometry in place of symbols and blocks. The $2-(7,3,1)$ design is 7 points and 7 lines such that each point lies on 3 lines and each line passes through 3 points: Fano Plane Projective Geometry: Duality between points and lines

Finite Geometries

Euclidean geometries EG(n, s) with s^{n} points
EG(2, 2): 4 points and 6 lines:
Lines either meet in a point or not, then "parallel"

Points (x, y)
Projective geometries PG(n, s)
Add "finite" or points at infinity
to make ($\mathrm{s}^{\mathrm{n}+1}-1$)/(s-1) points
$\mathrm{PG}(2,2)$: 7 points with 3 new points at infinity and a new line
 at infinity: duality

Every pair of lines contains a common point: Projective Plane

Connection between Designs and Finite Projective Geometries

Symmetric BIB or Steiner triple system $\mathrm{S}(2,3,7)$ with $v=b=7$, $r=k=3, \lambda=1$, denoted $2-(7,3,1)$, is $\operatorname{PG}(2,2)$ or Fano Plane

Kirkman design $v=15, b=35, r=7, k=3, \lambda=1$, denoted 2 - $(15,3,1)$, is $\operatorname{PG}(3,2)$ not a symmetric BIB

Another symmetric BIB with $v=b=13, r=k=4, \lambda=1$ or 2 - $(13,4,1)$ design is $\operatorname{PG}(2,3)$ not a Steiner triple system, r and k now 4 and representing number of lines on a point.

Design Theory, Coding Theory, error correcting codes in classical and quantum cryptography, packing problem
R. A. Fisher Indian Science Congress, Bombay, 1938 R. C. Bose P. C. Mahalanobis, S. S. Bose S. N. Roy F. W. Levi
H. Gropp : The birth of a mathematical theory in British India, Coll. Math. Soc. Janos Bolyai 60, 315 (1992); A. R. P. Rau: R A Fisher, Design Theory and the Indian Connection, J. Biosci. 34, 353 (2009)

Quantum Spin Qubit for Quantum Information

Three Pauli operators $\sigma_{x} \sigma_{y} \sigma_{z}$ with Lie algebra $\left[\sigma_{x}, \sigma_{y}\right]=2 i \sigma_{z}$ and Clifford algebra $\sigma_{\mathrm{x}} \sigma_{\mathrm{y}}=\mathrm{i} \sigma_{z} \quad \operatorname{Cyclic}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ $\mathrm{SU}(2)$ group or su(2) algebra 3 components

Two-state System

$$
\frac{1}{\sqrt{2}}(|0\rangle \pm|1\rangle)
$$

State Wave Function Density Matrix

Mixture $\frac{1}{\sqrt{2}}\left(e^{i \theta_{0}}|0\rangle+e^{i \theta_{1}}|1\rangle\right)$
$\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & \frac{1}{2}\end{array}\right)$
$S U(2) \cong S^{2} X U(1)$
Fiber Bundle

two spins qubit pair

$\sigma_{i} \quad \tau_{i}$
$\sigma_{i} \tau_{j}$
15 operators
SU(4)

O_{X}	σ_{z}	τ_{z}	$\sigma_{z} \tau_{z}$	σ_{x}	σ_{y}	$\sigma_{x} \tau_{z}$	$\sigma_{y} \tau_{z}$	τ_{x}	τ_{y}	$\sigma_{z} \tau_{x}$	$\sigma_{z} \tau_{y}$	$\sigma_{x} \tau_{x}$	$\sigma_{y} \tau_{y}$	$\sigma_{x} \tau_{y}$	$\sigma_{y} \tau_{x}$
σ_{z}	0	0	0	$i \sigma_{y}$	$-i \sigma_{x}$	$i \sigma_{y} \tau_{z}$	$-i \sigma_{x} \tau_{z}$	0	0	0	0	$i \sigma_{y} \tau_{x}$	$-i \sigma_{x} \tau_{y}$	$i \sigma_{y} \tau_{y}$	$-i \sigma_{x} \tau_{x}$
τ_{z}	0	0	0	0	0	0	0	$i \tau_{y}$	$-i \tau_{x}$	$i \sigma_{z} \tau_{y}$	$-i \sigma_{z} \tau_{x}$	$i \sigma_{x} \tau_{y}$	$-i \sigma_{y} \tau_{x}$	$-i \sigma_{x} \tau_{x}$	$i \sigma_{y} \tau_{y}$
$\sigma_{z} \tau_{z}$	0	0	0	$i \sigma_{y} \tau_{z}$	$-i \sigma_{x} \tau_{z}$	$i \sigma_{y}$	$-i \sigma_{x}$	$i \sigma_{z} \tau_{y}$	$-i \sigma_{z} \tau_{x}$	$i \tau_{y}$	$-i \tau_{x}$	0	0	0	0
σ_{x}	$-i \sigma_{y}$	0	$-i \sigma_{y} \tau_{z}$	0	$i \sigma_{z}$	0	$i \sigma_{z} \tau_{z}$	0	0	$-i \sigma_{y} \tau_{x}$	$-i \sigma_{y} \tau_{y}$	0	$i \sigma_{z} \tau_{y}$	0	$i \sigma_{z} \tau_{x}$
σ_{y}	$i \sigma_{x}$	0	$i \sigma_{x} \tau_{z}$	$-i \sigma_{z}$	0	0	$-i \sigma_{z} \tau_{z}$	0	0	0	$i \sigma_{x} \tau_{y}$	$-i \sigma_{z} \tau_{x}$	0	$-i \sigma_{z} \tau_{y}$	0
$\sigma_{x} \tau_{z}$	$-i \sigma_{y} \tau_{z}$	0	$-i \sigma_{y}$	0	$i \sigma_{z} \tau_{z}$	0	$i \sigma_{z}$	$i \sigma_{x} \tau_{y}$	$-i \sigma_{x} \tau_{x}$	0	0	$i \tau_{y}$	0	$-i \tau_{x}$	0
$\sigma_{y} \tau_{z}$	$i \sigma_{x} \tau_{z}$	0	$i \sigma_{x}$	$-i \sigma_{z} \tau_{z}$	0	$-i \sigma_{z}$	0	$i \sigma_{y} \tau_{y}$	$-i \sigma_{y} \tau_{x}$	0	0	0	$-i \tau_{x}$	0	$i \tau_{y}$
τ_{x}	0	$-i \tau_{y}$	$-i \sigma_{z} \tau_{y}$	0	0	$-i \sigma_{x} \tau_{y}$	$-i \sigma_{y} \tau_{y}$	0	$i \tau_{z}$	0	$i \sigma_{z} \tau_{z}$	0	$i \sigma_{y} \tau_{z}$	$i \sigma_{x} \tau_{z}$	0
τ_{y}	0	$i \tau_{x}$	$\imath \sigma_{z} \tau_{x}$	0	0	$i \sigma_{x} \tau_{x}$	$i \sigma_{y} \tau_{x}$	$-i \tau_{z}$	0	$-i \sigma_{z} \tau_{z}$	0	$-i \sigma_{x} \tau_{z}$	0	0	$-i \sigma_{y} \tau_{z}$
$\sigma_{z} \tau_{x}$	0	$-i \sigma_{z} \tau_{y}$	$-i \tau_{y}$	$i \sigma_{y} \tau_{x}$	$-i \sigma_{x} \tau_{x}$	0	0	0	$i \sigma_{z} \tau_{z}$	0	$i \tau_{z}$	$i \sigma_{y}$	0	0	$-i \sigma_{x}$
$\sigma_{z} \tau_{y}$	0	$i \sigma_{z} \tau_{x}$	$i \tau_{x}$	$i \sigma_{y} \tau_{y}$	$-i \sigma_{x} \tau_{y}$	0	0	$-i \sigma_{z} \tau_{z}$	0	$-i \tau_{z}$	0	0	$-i \sigma_{x}$	$i \sigma_{y}$	0
$\sigma_{x} \tau_{x}$	$-i \sigma_{y} \tau_{x}$	$-i \sigma_{x} \tau_{y}$		0	$i \sigma_{z} \tau_{x}$	$-i T_{y}$	0	0	$i \sigma_{x} \tau_{z}$	$-i \sigma_{y}$	0	0	0	$i \tau_{z}$	$i \sigma_{z}$
$\sigma_{y} \tau_{y}$	$i \sigma_{x} \tau_{y}$	$i \sigma_{y} \tau_{x}$	0	$-i \sigma_{z} \tau_{y}$	0	0	$i \tau_{x}$	$-i \sigma_{y} \tau_{z}$	0	0	$i \sigma_{x}$	0	0	$-i \sigma_{z}$	$-i \tau_{z}$
$\sigma_{x} \tau_{y}$	$-i \sigma_{y} \tau_{y}$	$i \sigma_{x} \tau_{x}$	0	,	$i_{z} \tau_{y}$	${ }^{2} \tau_{x}$	0	$-i \sigma_{x} \tau_{z}$	0	0	$-i \sigma_{y}$	$-i \tau_{z}$	$i \sigma_{z}$	0	0
$\sigma_{y} \tau_{x}$	$i \sigma_{x} \tau_{x}$	$-i \sigma_{y} \tau_{y}$	0	$-i \sigma_{z} \tau_{x}$	0	0	$-i \tau_{y}$	0	${ }^{i} \sigma_{y} \tau_{z}$	$i \sigma_{x}$	0	$-i \sigma_{z}$	$i \tau_{z}$	0	0

Table of Commutators
Each row has 7 zeroes, each O_{x} commutes with 6 , anti- with 8

Subgroup of $S U(4): S U(2) X S U(2) X U(1)$

Seven generators; choose any one of 15,6 others : 7 in all

Connection of qubit states/operators to Kirkman

Full su(4) of two qubits: 15 operators, triplet multiplication rules Each operator commutes with 6 others, anticommutes with 8

Kirkman's 15 schoolgirls meant 105 pairs. Ranks of 3 meant 35 such, for 5 rows each for 7 days: $v=15, b=35, r=7, k=3$. Note $v r=b k$.

15 operators also for triplet multiplication (Lie or Clifford) mean 105 and 35 lines. These divide, however, into two sets. A commuting set has 15 points on 15 lines, each point on 3 lines: $v=15=b, r=3=k$. An anti-commuting set has 15 points on 20 lines, each point on 4 lines: $v=15, b=20, r=4, k=3$. First set diagram has unarrowed lines, second set arrowed.

Note also that 3 -qubit X states also involve 15 operators with similar analogical features. Thus qubit algebra \cong Kirkman problem.

N qubits' general states: $\mathrm{PG}(2 \mathrm{~N}-1,2) \quad \mathrm{X}-\mathrm{PG}(\mathrm{N}, 2)$
Sai Vinjanampathy and ARPR Phys. Rev. A 82, 032336 (2010)

Basic Interaction, <| |> Matrix element,

Fano Plane PG(2, 2), 2-(7, 3, 1) STS, 3-string binary

Cube: 8 vertices/schoolgirls 28 lines: 12 edges + 12 face diagonals +4 body diagonals

Tetrahedron: 15 points, 4 Fano Plane faces, 4-string

Constructing a Kirkman Arrangement

 Choose any of the $15 \mathrm{O}_{\mathrm{i}}$ operators of qubit pair place as centre +6 it commutes with in Fano triangle, also place as body centre and 8 others in the cube, OR construct the equivalent tetrahedron;place seven triplet lines from triangle in top row with same binary for days of the week, place other 28 lines to complete the table, the 4 "left out" of triangle as the central element

	SUN			MON			TU			WED			TH			FRI			SAT	
	111			001			010			011			100			101			110	
R_{0}	G_{0}^{\prime}	B_{0}	B_{2}	R_{0}	B_{1}	G_{0}^{\prime}	B_{1}	B_{3}	B_{3}	B_{2}	B_{0}	G_{0}	B_{2}	B_{4}	B_{4}	B_{3}	R_{0}	B_{1}	B_{0}	B_{4}
R_{1}	B_{2}^{\prime}	G_{1}	R_{2}	B_{0}^{\prime}	R_{1}	R_{2}	$R_{0}^{\prime \prime \prime}$	R_{3}	R_{4}	R_{4}^{\prime}	R_{1}	R_{3}	B_{0}	R_{4}	$R 1$	G_{0}	R_{3}	R_{4}	G_{0}	R_{2}
R_{3}	B_{1}	G_{2}	G_{1}	G_{0}	G_{4}	G_{1}	B_{0}	G_{2}	G_{3}	G_{0}	G_{2}	G_{2}	R_{0}	G_{4}	G_{4}	B_{0}^{0}	G_{3}	G_{3}	$R_{4}^{\prime \prime \prime}$	G_{1}
R_{2}	$B_{4}^{\prime \prime \prime}$	G_{3}	G_{2}	B_{4}	R_{4}	R_{4}	$B_{2}^{\prime \prime}$	G_{3}	G_{1}	$B_{4}^{\prime \prime \prime}$	R_{3}	G_{1}	B_{3}^{\prime}	R_{2}	G_{1}	B_{1}^{\prime}	R_{4}	G_{2}	B_{3}	R_{11}
R_{4}	B_{3}	G_{4}	G_{3}	B_{3}^{\prime}	R_{3}	G_{4}	B_{4}^{\prime}	R_{1}^{1}	G_{4}	$B_{1}^{\prime \prime \prime}$	R_{2}	G_{3}	$B_{1}^{\prime \prime \prime \prime}$	R_{1}	G_{2}	B_{2}	R_{2}	G_{4}	B_{2}	R_{3}

Color-flavor scheme: 3 colors, 5 flavors
λ

(B, G, R):
7 colours rainbow VIBGYOR 111

(U, B, G, R):
15 colours
1111

$400 \mathrm{~nm} \approx 3 \mathrm{eV}, 600 \mathrm{~nm} \approx 2 \mathrm{eV}$

Four Color Vision in Birds

in white light in uv bird's eye-view
http://www.nature.com/scitable/blog/the-artful-brain/alternate_realities

Figure 4.1: The color design of the system $D_{c}[7,3,1]\left|O_{1}, O_{4}, O_{8}\right\rangle$. This is a tiling produced from the design of Figure 3.1. The colors give the identities of the operatorswith the explicit equival ences given in the Dictionary

Alternative
(7, 3, 1)
Designs with
Alternative
"Seeds"

Acoustic and Colour Designs

Kirkman
(15, 3, 1)
Designs
3×5
7 blocks/ days

Western musical notation: Octave (A, B, C, D, E, F, G) and flat-natural-sharp.
For Kirkman, five letters and 3 signatures. 3 notes in each chord

$v=15,31,63,127,255, \ldots \quad$ IP addresses Conclusion 4 qubit, $2^{8}-1,11111111$

Ensembles of quantum information exhibit a group structure that can be encoded into a design system. A representation of the design system gives a mapping of the overarching structure of the internal quantum state. The equivalence imposed between physical state and psychological ideal gives rise to methods of communication.

Lisa Jevbratt, 1:1 (One to one), 1999-01, digital media, the United States, ht t : //j evbr at t . com 1_t o_1/.

