Entanglement, discord and other quantum correlations

A. R. P. Rau, Physics \& Astronomy, Louisiana State Univ

Entanglement, use in quantum information, decay and restoration;
Bell Inequalities; Entropic Inequalities;
Quantum Discord, entropic and geometric;
Calculations for 7-parameter X -states of two qubits;
X - and extended X -states, qubit-qudit or N qubits;
Geometrical generalization of Bloch Sphere to two-qubit states and their evolution : a decomposition of $\operatorname{SU}(\mathrm{N})$ analogous to that of $\operatorname{SU}(2)$, provides a minimal unitary operator useful in calculating discord
Dmitry Uskov, Sai Vinjanampathy, Mazhar Ali \& Gernot Alber ARPR arXiv:1701.05922

Entanglement and other quantum correlations

Quantum Information:
Computing, Cryptography, Teleportation
Basic Quantum Principles:
Superposition -- linearity of QM Entanglement -- non-separability of subsystems other correlations: discord, inequalities,.. Identity of particles -- spin/statistics

Applications in Quantum Information

Quantum Correlations

Entanglement: Separability Mixed State ρ
Concurrence Positivity of Partial Transpose qubit-qubit \& qubit-qutrit, qudit-quDit?

Quantum Discord, based on Entropy
Mutual Information - Max Classical Correlation

- when one side is a qubit
- X states qubit-qubit
symmetry structure
- Unitary evolution for general $\operatorname{SU}(\mathrm{N})$
- Discord for general dimension, X states

Ollivier and Zurek, Phys. Rev. Lett. 88, 017001 (2002)
Henderson and Vedral, J. Phys. A 34, 6899 (2002)
Quantum Discord Entropy $S(\rho)=-\operatorname{tr}\left(\rho \log _{2} \rho\right)$ Pure states
$|\uparrow \uparrow\rangle \quad\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right) \quad\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \quad \rho^{A, B}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
$(|\uparrow\rangle+|\downarrow\rangle)^{A}(|\uparrow\rangle+|\downarrow\rangle)^{B} / 2$

$$
\frac{1}{2}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \quad \frac{1}{4}\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

$$
\rho^{A, B}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

All eigenvalues 1 and 0 , all entropies 0 unentangled states

Pure entangled Bell state $(|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle) / \sqrt{2}$

$$
\begin{array}{cc}
|A B\rangle & \rho^{A B} \\
\frac{1}{\sqrt{ } 2}\left(\begin{array}{c}
1 \\
0 \\
0 \\
1
\end{array}\right) \quad \frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & \pm 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\pm 1 & 0 & 0 & 1
\end{array}\right) \quad \rho^{A, B}=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{array}
$$

Quantum Mutual Information $\quad I=S^{A}+S^{B}-S^{A B}$

$$
S^{A}=2\left(-\frac{1}{2} \log _{2} \frac{1}{2}\right)=1 \quad I=2
$$

Classical correlation C : max information on A by measurements on $B \quad C=1$
Quantum Discord

$$
Q=I-C
$$

$$
\rho=(1-a)\left|S^{+}\right\rangle\left\langle S^{+}\right|+a|\downarrow \downarrow\rangle\langle\downarrow \downarrow|
$$

Mazhar Ali

$$
\left|S^{+}\right\rangle=|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle
$$

M. Ali, ARPR, G. Alber, Phys. Rev. A 81, 042105 (2010)

$$
\begin{gathered}
\rho=a\left|P^{+}\right\rangle\left\langle P^{+}\right|+(1-a)|\downarrow \downarrow\rangle\langle\downarrow \downarrow| \\
\left|P^{+}\right\rangle=|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle
\end{gathered}
$$

Werner state separable for a<1/3
$\rho=a\left|S^{-}\right\rangle\left\langle S^{-}\right|+\mathcal{I}(1-a) / 4$

$$
\begin{aligned}
& \text { Quantum mutual information } \\
& \begin{aligned}
& \mathcal{I}\left(\rho^{A B}\right)=S\left(\rho^{A}\right)+S\left(\rho^{B}\right)-S\left(\rho^{A B}\right) \\
& \rho_{i}=\frac{1}{p_{i}}\left(A_{i} \otimes I\right) \rho\left(A_{i} \otimes S(\rho)=-\operatorname{tr}\left(\rho \log _{2} \rho\right)\right. \\
& \text { probabilities, trace }
\end{aligned}
\end{aligned}
$$

S. Luo, Phys. Rev. A 77, 042303 (2008)

Conditional density operator upon measurements over A

$$
\begin{aligned}
& A_{i}=U \Pi_{i} U^{\dagger} \quad U=t I+\mathrm{i} \vec{y} \cdot \vec{\sigma} \\
& \Pi_{i}=|i\rangle\langle i|, i= \pm \quad \text { von Neumann projectors }
\end{aligned}
$$

Conditional density matrix for B because of measurements over A :

$$
S\left(\rho \mid\left\{A_{i}\right\}\right):=\sum_{i} p_{i} S\left(\rho_{i}\right)
$$

Its quantum mutual information:

$$
\mathcal{I}\left(\rho \mid\left\{A_{i}\right\}\right):=S\left(\rho^{B}\right)-S\left(\rho \mid\left\{A_{i}\right\}\right)
$$

$$
\mathcal{C}(\rho):=\sup _{\left\{A_{i}\right\}} \mathcal{I}\left(\rho \mid\left\{A_{i}\right\}\right) \quad \mathcal{Q}(\rho):=\mathcal{I}(\rho)-\mathcal{C}(\rho) \quad \text { Discord }
$$

For A a quit: $\quad A_{ \pm}=(I \pm \vec{\sigma} \cdot \vec{z}) / 2$

$$
A_{+}=\left(\begin{array}{cc}
\cos ^{2}(\theta / 2) & \frac{1}{2} \sin \theta \exp (-i \phi) \\
\frac{1}{2} \sin \theta \exp (i \phi) & \sin ^{2}(\theta / 2)
\end{array}\right.
$$

$\vec{z}=\left\{2\left(-t y_{2}+y_{1} y_{3}\right), 2\left(t y_{1}+y_{2} y_{3}\right), t^{2}+y_{3}^{2}-y_{1}^{2}-y_{2}^{2}\right\}$
A_{-}parity conjugate $(\theta, \phi) \rightarrow(\pi-\theta, \pi+\phi)$
Note z is a unit vector, only two independent parameters
S. Luo, Phys. Rev. A 77, 042303 (2008)
M. Ali, ARPR, G. Alber, Phys. Rev. A 81, 042105 (2010)

Sai Vinjanampathy and ARPR, J. Phys. A 45, 095303 (2012)
A simple prescription for getting conditional density matrix for B when A a quit, whatever B : qubit-qubit, qubit-qudit $d>2, N$ quits

System AB with A a qubit

example of
$d=4$, or $N=3$
qubit-qubit, qubit-qudit, N qubits
Reduced density matrix for B: multiply each block by elements of $A_{ \pm}$and add blocks
X states: only diagonal and anti-diagonal Extended X states: blockwise eigenvalue calculation analytical: quadratic or quartic roots

X-state density matrix
$\rho=\left(\begin{array}{cccc}\rho_{11} & 0 & 0 & \rho_{14} \\ 0 & \rho_{22} & \rho_{23} & 0 \\ 0 & \rho_{32} & \rho_{33} & 0 \\ \rho_{41} & 0 & 0 & \rho_{44}\end{array}\right)$
3 real along diagonal, 2 complex on off-diagonal: 7 parameters

$$
\rho=\left(I+\Sigma_{i} g_{i} X_{i}\right) / 4
$$

su(2) $\mathrm{Xu}(1) \mathrm{X}$ su(2) symmetry, 7 operators' algebra given by diagram

$$
\rho=\frac{1}{4} I+\frac{1}{4}\left(\begin{array}{cccc}
-g_{4} & g_{3}-i g_{2} & g_{6}-i g_{5} & g_{1}-g_{7} \\
g_{3}+i g_{2} & g_{4} & g_{1}+g_{7} & g_{6}+i g_{5} \\
g_{6}+i g_{5} & g_{1}+g_{7} & g_{4} & g_{3}+i g_{2} \\
g_{1}-g_{7} & g_{6}-i g_{5} & g_{3}-i g_{2} & -g_{4}
\end{array}\right)
$$

N-qubit X-states: iterate:(su(2) $X u(1) X$ su(2)) $X u(1) X(s u(2) X u(1) X$ su(2)) ARPR, arXiv:0906.4716 \& J.Phys.A 42(2009);Phys. Rev. A79, 042323 (2009)

$$
\begin{aligned}
O_{2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) & O_{3}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \\
O_{4}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) & O_{5}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \\
O_{6}=i\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) & O_{7}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) \\
O_{8}=i\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) & O_{9}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

two spins qubit pair

$\sigma_{i} \quad \tau_{i}$
$\sigma_{i} \tau_{j}$
15 operators
SU(4)

O_{X}	σ_{z}	τ_{z}	$\sigma_{z} \tau_{z}$	σ_{x}	σ_{y}	$\sigma_{x} \tau_{z}$	$\sigma_{y} \tau_{z}$	τ_{x}	τ_{y}	$\sigma_{z} \tau_{x}$	$\sigma_{z} \tau_{y}$	$\sigma_{x} \tau_{x}$	$\sigma_{y} \tau_{y}$	$\sigma_{x} \tau_{y}$	$\sigma_{y} \tau_{x}$
σ_{z}	0	0	0	$i \sigma_{y}$	$-i \sigma_{x}$	$i \sigma_{y} \tau_{z}$	$-i \sigma_{x} \tau_{z}$	0	0	0	0	$i \sigma_{y} \tau_{x}$	$-i \sigma_{x} \tau_{y}$	$i \sigma_{y} \tau_{y}$	$-i \sigma_{x} \tau_{x}$
τ_{z}	0	0	0	0	0	0	0	$i \tau_{y}$	$-i \tau_{x}$	$i \sigma_{z} \tau_{y}$	$-i \sigma_{z} \tau_{x}$	$i \sigma_{x} \tau_{y}$	$-i \sigma_{y} \tau_{x}$	$-i \sigma_{x} \tau_{x}$	$i \sigma_{y} \tau_{y}$
$\sigma_{z} \tau_{z}$	0	0	0	$i \sigma_{y} \tau_{z}$	$-i \sigma_{x} \tau_{z}$	$i \sigma_{y}$	$-i \sigma_{x}$	$i \sigma_{z} \tau_{y}$	$-i \sigma_{z} \tau_{x}$	$\imath \tau_{y}$	$-i \tau_{x}$	0	0	0	0
σ_{x}	$-i \sigma_{y}$	0	$-i \sigma_{y} \tau_{z}$	0	$i \sigma_{z}$	0	$i \sigma_{z} \tau_{z}$	0	0	$-i \sigma_{y} \tau_{x}$	$-i \sigma_{y} \tau_{y}$	0	$i \sigma_{z} \tau_{y}$	0	$i \sigma_{z} \tau_{x}$
σ_{y}	$i \sigma_{x}$	0	$i \sigma_{x} \tau_{z}$	$-i \sigma_{z}$	0	0	$-i \sigma_{z} \tau_{z}$	0	0	0	$i \sigma_{x} \tau_{y}$	$-i \sigma_{z} \tau_{x}$	0	$-i \sigma_{z} \tau_{y}$	0
$\sigma_{x} \tau_{z}$	$-i \sigma_{y} \tau_{z}$	0	$-i \sigma_{y}$	0	$i \sigma_{z} \tau_{z}$	0	$i \sigma_{z}$	$i \sigma_{x} \tau_{y}$	$-i \sigma_{x} \tau_{x}$	0	0	$i \tau_{y}$	0	$-i \tau_{x}$	0
$\sigma_{y} \tau_{z}$	$i \sigma_{x} \tau_{z}$	0	$i \sigma_{x}$	$-i \sigma_{z} \tau_{z}$	0	$-i \sigma_{z}$	0	$i \sigma_{y} \tau_{y}$	$-i \sigma_{y} \tau_{x}$	0	0	0	$-i \tau_{x}$	0	$i \tau_{y}$
τ_{x}	0	$-i \tau_{y}$	$-i \sigma_{z} \tau_{y}$	0	0	$-i \sigma_{x} \tau_{y}$	$-i \sigma_{y} \tau_{y}$	0	$i \tau_{z}$	0	$i \sigma_{z} \tau_{z}$	0	$i \sigma_{y} \tau_{z}$	$i \sigma_{x} \tau_{z}$	0
τ_{y}	0	$i \tau_{x}$	$i \sigma_{z} \tau_{x}$	0	0	$i \sigma_{x} \tau_{x}$	$i \sigma_{y} \tau_{x}$	$-i \tau_{z}$	0	$-i \sigma_{z} \tau_{z}$	0	$-i \sigma_{x} \tau_{z}$	0	0	$-i \sigma_{y} \tau_{z}$
$\sigma_{z} \tau_{x}$	0	$-i \sigma_{z} \tau_{y}$	$-i \tau_{y}$	$i \sigma_{y} \tau_{x}$	$-i \sigma_{x} \tau_{x}$	0	0	0	$i \sigma_{z} \tau_{z}$	0	$i \tau_{z}$	$i \sigma_{y}$	0	0	$-i \sigma_{x}$
$\sigma_{z} \tau_{y}$	0	$i \sigma_{z} \tau_{x}$	$i \tau_{x}$	$i \sigma_{y} \tau_{y}$	$-i \sigma_{x} \tau_{y}$	0	0	$-i \sigma_{z} \tau_{z}$	0	$-i \tau_{z}$	0	0	$-i \sigma_{x}$	$i \sigma_{y}$	0
$\sigma_{x} \tau_{x}$	$-i \sigma_{y} \tau_{x}$	$-i \sigma_{x} \tau_{y}$	0	0	$i \sigma_{z} \tau_{x}$	$-i \tau_{y}$	0	0	$i \sigma_{x} \tau_{z}$	$-i \sigma_{y}$	0	0	0	$i \tau_{z}$	$i \sigma_{z}$
$\sigma_{y} \tau_{y}$	$i \sigma_{x} \tau_{y}$	$i \sigma_{y} \tau_{x}$	0	$-i \sigma_{z} \tau_{y}$	0	0	$i \tau_{x}$	$-i \sigma_{y} \tau_{z}$	0	0	$i \sigma_{x}$	0	0	$-i \sigma_{z}$	$-i \tau_{z}$
$\sigma_{x} \tau_{y}$	$-i \sigma_{y} \tau_{y}$	$i \sigma_{x} \tau_{x}$	0	0	$i \sigma_{z} \tau_{y}$	$i \tau_{x}$	0	$-i \sigma_{x} \tau_{z}$	0	0	$-i \sigma_{y}$	$-i \tau_{z}$	$i \sigma_{z}$	0	0
$\sigma_{y} \tau_{x}$	$i \sigma_{x} \tau_{x}$	$-i \sigma_{y} \tau_{y}$	0	$-i \sigma_{z} \tau_{x}$	0	0	$-i \tau_{y}$	0	$i \sigma_{y} \tau_{z}$	$i \sigma_{x}$	0	$-i \sigma_{z}$	$i \tau_{z}$	0	0

Table of Commutators
Each row has 7 zeroes, each commutes with 6 and anti with 8

Subgroup of $S U(4): S U(2) X U(1) X S U(2)$

Seven generators; choose any one of 15,6 others : 7 in all

Parameters in density matrices

Qudit-quDit: $d^{2} D^{2}-1$; qubit-qudit: $4 d^{2}-1 ; N$ qubits : $2^{2 N}-1$

$$
N=2: 15, N=3: 63, N=4: 255, \ldots . .
$$

X states: qubit - qudit : 4d -1 ; N qubits : $2^{N+1}-1$

$$
N=2: 7, \quad N=3: 15, \quad N=4: 31, \ldots . .
$$

Extended X states : qubit - qudit : 8d-1 for d even $8 \mathrm{~d}-5$ for d odd N qubits : $2^{N+2}-1 ; \quad N=2: 15, \quad N=3: 31, \quad N=4: 63, \ldots$

Qubit-qubit : extended X states embrace all 15 of general density

N qubit discord

Two-parameter minimization $\quad \theta, \phi \quad \theta=0, \pi / 2$ 10,000 randomly chosen two- and three- qubit density matrices

Sai Vinjanampathy and ARPR, arXiv 1106.4488 \& J. Phys. A45, 095303('12)
O. Chen etal 1102.0181 and X. Lu etal. Phvs. Rev. A 83. 012327 (2011)

Discord calculation when A is higher dimensional counterpart of $A_{ \pm}$: d projectors adding to unity

$$
A_{i}=U \Pi_{i} U^{\dagger}
$$

compact unitary matrix; e.g. only 2 , not 3

Geometrical distance measure of discord:

$$
D^{(2)}(\rho)=\min _{\chi \in \mathcal{C}}\|\rho-\chi\|^{2}
$$

classical state B

$$
\chi=\sum_{i=1}^{d_{A}} p_{i} \Pi_{i}^{(A)} \otimes \rho_{i}^{(B)}
$$

$$
x_{i} \equiv \operatorname{tr}\left(\rho * \sigma_{i} \otimes I\right), y_{i} \equiv \operatorname{tr}\left(\rho * I \otimes \sigma_{i}\right) T_{i j} \equiv \operatorname{tr}\left(\rho * \sigma_{i} \otimes \sigma_{j}\right)
$$

$$
D^{(2)}(\rho)=\frac{1}{4}\left(\|x\|^{2}+\|T\|^{2}-k_{\max }\right) \quad x x^{T}+T T^{T}
$$

Dakic, Vedral and Brukner, arXiv 1004.0190; Luo and Fu, PR A82, 034302

Spin $1 / 2$, Two-level system, Qubit

SU(2) Symmetry: 3 parameters

$$
\binom{c_{+}}{c_{-}} \quad\left|c_{+}\right|^{2}+\left|c_{-}\right|^{2}=1
$$

Evolution operator:

$$
\begin{gathered}
U(t)=e^{z(t) \sigma_{+} / 2} e^{w^{*}(t) \sigma_{-} / 2} e^{-i \mu(t) \sigma_{z} / 2} \\
i \dot{\psi}=H(t) \psi(t), i \dot{\rho}=[H(t), \rho(t)] \\
w^{*}=-z^{*} /\left(1+|z|^{2}\right), e^{\operatorname{Im} \mu}=\left(1+|z|^{2}\right)
\end{gathered}
$$

Inverse stereographic projection of z to Bloch sphere S^{2}

$$
S U(2): S^{2} \times U(1)
$$

Bloch sphere base space X fiber, a single phase

SU(4):Four-sphere base X fiber of two $\operatorname{SU}(2)$ manifolds

4-level systems, Two spins/qubits: SU(4) Symmetry,15 paramet

Sub-algebra of so(5) with 10 parameters

D.B.Uskov and ARPR,

Phys. Rev. A 74, 030304 (R) (2006) and 78, 022331 (2008)

Sai Vinjanampathy and ARPR, J. Phys. A 42, 425303 (2009)

A four-sphere, the analog of Bloch two-sphere: 4 parameters.
At each point on it, not a single phase as for single spin but two "spiked Bloch spheres" for a total of six parameters.

