Machine Learning for Quantum Control

Barry C. Sanders Seyed Shakib Vedaie, Archismita Dalal & Eduardo J. Páez

6 September 2019

Proc ITNG 2010:506; Proc ESANN 2016:327; *Neurocomputing* **268**:116 (2017) *PRL* **104**:063603 (2010), **107**:233601 (2011), **110**:220501 (2013) *NJP* **20**:113009 (2018); *PRA* **100**:012106 (2019)

Aim

Feasible control policies for quantum (\mathcal{Q}) technologies.

Claims

- Framework connecting control (C) & learning for both 2 & classical (C).
- A supervised-learning (SL) agent devises feasible control policies for phase estimation in adaptive *Q*-enhanced metrology (A*Q*EM).

Novelty

- Unification of *Q*C and classical control (*C*C).
- Method for casting *2*C as machine learning.

Importance

- Un-confuse.
- Enhance *QC* toolkit.

S. S. Vedaie, A. Dalal, E. J. Páez & B. C. Sanders Machine Learning for Quantum Control

Unifying $\mathcal{Q}C$ and $\mathcal{C}C$

Steer specific controllable degrees of freedom so plant dynamics yields approximately correct observations.

Lewis and Yang (1997) Basic Control Systems Engineering

Learning

"An agent is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E." — Tom Mitchell (1997) *Machine Learning*.

10/cm9v

Learning for control

T/U: Teacher or User

Learning enables a controller who is neither omniscient nor possesses a feasible alternative to execute the task successfully.

Fu (1986) 10/cgkfk2

Policies as vectors

Policy ρ

• addition, subtraction, scalar multiplication: common vector operations

Policies as vectors $\in \mathcal{V} \subset \mathbb{R}^{2^N}$

A \mathscr{Q} EM: Simplest case of estimating φ for U(1)

Task

Estimate unknown phase φ given *N* particles.

Uncertainty

$$\Delta \tilde{\varphi} \sim N^{-\wp}, \wp = \begin{cases} 1/2, & \text{Standard } \mathscr{Q} \text{ limit,} \\ 1, & \text{Heisenberg limit.} \end{cases}$$

SL for A2EM

Training stage

- Feature vector $\boldsymbol{b} \in \{0, 1\}^N$
- Label $\varphi \in rand [0, 2\pi)$
- Training set: {**b**, φ}
- Hypothesis function $\Phi^{\varrho}: B \to \{\varphi\}: \mathbf{b} \mapsto \varphi$
- Cost function

$$V_N^{\varrho} := (S_N^{\varrho})^{-2} - 1 \text{ for}$$
$$S_N^{\varrho} := \left| \sum_{k=1}^{10N^2} \frac{\exp i \left(\varphi^{(k)} - (\Phi_N^{\varrho})^{(k)} \right)}{10N^2} \right|$$

Φ^{ϱ} : generalized log search

S. S. Vedaie, A. Dalal, E. J. Páez & B. C. Sanders

/13

SL for A2EM

S. S. Vedaie, A. Dalal, E. J. Páez & B. C. Sanders Machine Learning for Quantum Control

10/13

Phase-noise models

Symmetric distributions

S. S. Vedaie, A. Dalal, E. J. Páez & B. C. Sanders

Asymmetric distributions

Machine Learning for Quantum Control

Results: SL for A2EM

(b) random telegraph noise

(c) skew-normal-distribution noise

(d) log-normal-distribution noise

• for V = 1, \triangle for V = 2, \blacksquare for V = 3, + for V = 4, x when V = 5, and \diamond for V = 7. - for HL, - - for SQL

11/13

Results: Bayesian feedback for A2EM

(b) random telegraph noise

(c) skew-normal-distribution noise

(d) log-normal-distribution noise

• for V = 1, \triangle for V = 2, \blacksquare for V = 3, + for V = 4, x when V = 5, and \diamond for V = 7. - for HL, - - for SQL

Machine Learning for Quantum Control

Results: Power-law scaling

	V	γ	2 _{62SL}	R ² SL	2,0 _B	$\overline{R^2}_B$
SQL			1		1	
HL			2		2	
No noise			1.459	0.9998	1.957	0.9993
	1	0	1.302	0.9999	1.512	0.9985
Normal	2	0	1.267	0.9999	-	-
	3	0	0.954	0.9992	1.190	0.9997
	4	0	-	-	1.004	0.9948
	1	0	1.266	0.9999	1.526	0.9991
Random telegraph	2	0	1.186	0.9997	1.277	0.9967
	3	0	0.935	0.9993	0.919	0.9892
	1	0.8509	1.296	0.9999	-	-
Skew-normal	3	0.8509	1.246	0.9999	1.343	0.9987
	5	0.8509	1.118	0.9998	1.116	0.9927
	7	0.8509	1.039	0.9996	1.041	0.9964
	1	0.8509	1.290	0.9999	-	-
Log-normal	3	0.8509	1.217	0.9998	1.258	0.9919
-	5	0.8509	1.058	0.9997	1.086	0.9961
	7	0.8509	0.981	0.9994	0.9209	0.7965

Complexity	SL	BF	
Design time	O(N ⁶)	-	
Policy space	O(N)	$O(N^2)$	
Implementation time	O(N)	$O(N^3)$	

- SL policies deliver $\wp_L > 1/2$, but not better than Bayesian (model-based) policies.
- Learned policies are computationally cheaper than Bayesian method.