g

er

' Automatic diff

COXANADU

.
.
- e
)
e
=



XANADU

| 4 _._.__.._.n.




Hardware Software

STRAWBERRY FIELDS

strawberryfields.ops

= Only software platform

prog = sf.Program(2) dedicated to photonic
quantum computing

= Three built-in
simulators

= Hardware connectivity
(currently private
access only)

What we’'re building:

= Photonic quantum
technologies

= Integrated
nanophotonics

= Continuous-variable
(CV) model

Building blocks:

=  Waveguides

= Resonators

= Modulators

= Beam Splitters

= Dedicated platform for
guantum machine
learning

= Device agnostic:
Xanadu, IBM, Rigetti,
Microsoft

= Connects to standard
ML libraries: PyTorch,
TensorFlow




Xanadu

PhDs in:
Theoretical Physics | Experimental Physics | Computational Physics | Quantum Information | Quantum Optics |
Physical Sciences | Mathematics | Electrical Engineering | Computer Engineering | Quantum Machine Learning

HARVARD l - l\::s_s:m:seﬂs s Stanford UNIVERSITY OF ? UNIVERSITY OF PRINCETON
w UNIVERSITY I I" Tothwologs University @WATERLOO J TORONTO UNIVERSITY



QOutline

1. From machine learning to ‘ﬁg‘l?
guantum machine learning SO
T )

1. Training quantum circuits

|0}
e

1. PennyLane + examples
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Why Is Deep Learning successful?

e Hardware advancements
(GPUs, TPUs)

. valutions ard ReLU

e \Workhorse algorithms T

(backpropagation, stochastic
gradient descent)

e Specialized, user-friendly software

O PyTorch T

TensorFlow



Why is Deep Learning successful?

e Hardware advancements

Large-scale Deep Unsupervised Learning using Graphics Processors

Rajat Raina RAJATRUCS. STANFORD.EDU
Anand Madhavan MANANDUSTANFORD.EDU
Andrew Y. Ng ANGHCS STANFORD.EDU

Computer Science Department, Stanford University, Stanford CA 94305 USA

In this paper., we suggest massively paral-
lel methods to help resolve these problems.
We argue that modern graphics processors
far surpass the computational capahilities of
multicore CPUs. and have the potential to
revolutionize the applicability of deep unsu-
pervised learning methods. We develop gen-
eral principles for massively parallelizing un-
supervised learning tasks using graphics pro-
cessors.  We show that these principles can
be applied to successfully scaling up learning
algorithms for both DBNs and sparse coding,
Our implementation of DBN learning is up to
70 times faster than a dual-core CPU imple-
mentation for large models. For example, we
are able to reduce the time required to learn a
four-layer DBN with 100 million free param-
eters from several weeks to around a single
day. For sparse coding, we develop a simple,
inherently parallel algorithm, that leads to a
5 to 15-fold speedup over previous methods.

X



Why is Deep Learning successful?

trn. loss
1 —— mmsprop
e \Workhorse algorithms — e
= nadam
i —— sgd
o —— sgd+nesterov
—— sgd+momentum
012 1 sgd+nesterov+momentum
w210 A
E
008
0.06 4
004 1
002 T T T T T T T
0 50 100 150 200 250 300
epoch

[https://shaoanlu.files.wordpress.com/2017/05/trn_loss.png]



Why Is Deep Learning successful?

e Specialized, user-friendly software

I Spotting cats

Number of projects at Google using TensorFlow*

........... 2{500

2012 13 14 5 16

*Google's main software
Source: Google library for machine leaming

Economist.com

A=A Andrej Karpathy & (" rolonw ) ~
& M Gkarpathy . s

I've been using PyTorch a few months now
and I've never felt better. | have more energy.
My skin is clearer. My eye sight has
improved.

11:56 AM - 26 May 2017

401 Retweets 1,564 Likes .e. a i‘ Q : .ﬁ

QO 33 71 401 ) 16K



Other takeaways from Deep Learning

e Crowdsourced innovation

e Shared code (including trained
weights)

-

" [https://www.cfr.org/blog/line-behind-billion-
' people-fun-fast-and-fact-filled]
——

{
\\\_, I =
— ——
\ e —
: = e

i)

Input Layer

e Compose and reuse componer /7[

e Rapid iteration j ]

e New ways of thinking

Yo | ¥ Ym-1 Y

Output Layer
[
X/ \
\

[RmdI: Random multimodel deep learning for classification. Proc. 2nd Int. Conf. Info. Sys. and Data
Min. (pp. 19-28). ACM.]



What can we leverage for
Quantum?

e Hardware advancements (QPUSs)

e \Workhorse algorithms

(quantum-aware backpropagation, stochastic
gradient descent)

e Specialized, user-friendly software

PENNYVLANE



QUANTUM
MACHINE LEARNING



Quantum computers are good

at:

Quantum physics

[Science 262, 218-220 (1993)]

Linear algebra

Sampling

[https.//www.mathworks.com/matlabcentral/ml

downloads/downloads/submissions/46012/versio
ns/1/screenshot.jpg]

Optimization

A ¢
e . Lo
B eoloe ="
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Quantum Machine Learning

Al/ML already uses special-purpose processors: GPUs, TPUs, ASICs

Quantum computers (QPUSs) could be used as special-purpose Al
accelerators

May enable training of previously intractable models

FPGAs GPUs CPUs QPUs
T O 4 -

Generality




Machine Learning Quantum

* We can adapt machine learning tools to help
understand and build quantum computers

 Use automatic differentiation to tune circuits

« Discover new algorithms and error-correction
strategies

« Unearth new physics?



Vision for Quantum Machine Learning

e Everyone can easily explore and run QML algorithms
e Models are widely shared (or reimplemented by others)
e Reusable circuit blocks, embeddings, pre-/post-processing

e Exciting QML results every single month

e [Feedback loop —new ideas we can’t predict today



QUANTUM CIRCUITS
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Key Concepts

{ variational circuit
Variational circuits eice |0 U(z,0)

Training quantum circuits S i

T —»| quantum

Quantum nodes e

0

—> f(:6)

O
Hybrid computation 3

]:-D@ D
CD




Key Concepts

e Variational circuits e | oo |




Variational Circuits

Main QML method for near-term (NISQ) devices
Ideas earlier began in simpler specialized forms:
o Variational Quantum Eigensolver (VQE)

o Quantum Alternating Operator Ansatz
(QAOA)

Natural extension to other circuits and tasks
(e.g., guantum classifier)

Nowadays many, many proposals



Variational Circuits

— (B) = f(z;6)

e Basic structure of a variational circuit: O iy
|. Preparation of a fixed initial state =
_ o (z,8)
I Quantum circuit: input data and free
arameters are used as gate |
P J 0)—Jv @ v ueaol-0-
arguments 1)
. |ﬂ} 5 U{EG}—._
lll. Measurement of fixed observable | U(fs)
|0) —U(61) — U(%)— 9
U
|0) U(fs)— 0
| U(0;)
|0} —U (2 )— U(fs)— @

X



Key Concepts

e Training quantum circuits



Differentiable computation

« Deep learning began with neural networks, but nowadays the
models are much richer

o Attention mechanisms, external memory, neural differential
equations, etc.

« Key insight: computation is end-to-end differentiable
* Program only the structure of computation (“build the model”)

« Use optimization (e.g., gradient descent) to fine-tune parameters
(“train the model”)



Differentiable computation

Quantum computing is also differentiable

Gates are controlled by parameters (e.g., rotation angle,
squeezing amplitude)

Expectation values depend smoothly on gate parameters

Can we train quantum circuits?

o> f(@6)=(B)
= (U'(6)BU(0))



How to train quantum circuits?

Two approaches:

l. Simulator-based
- Build simulation inside existing classical library

- Can leverage existing optimization & ML tools STRAWBERRY D

- Great for small circuits, but not scalable FIELDS QuantumFlow

1. Hardware-based

- No access to quantum information; only have )
measurements & expectation values quantum
- Needs to work as hardware becomes more (B) 5 el node
powerful
and cannot be simulated (5 cassica

X



Gradients of quantum circuitV f

e Training strategy: use gradient descent algorithms

e Need to compute gradients of variational circuit outputs with
respect to their gate parameters

e How can we compute gradients of quantum circuits when
even simulating their output is classically intractable?



The ‘parameter shift’ trick
f(0) = sin@ = 0y f(0) = cos b

sin(0+m/4)—sin(0—n/4)
V2

cos 0 =

Opf = 5 |f(0+m/4) — f(6 —7/4)]

1
V2



Parameter shift method

e Main insight: Use the same quantum hardware to
evaluate its own gradients.

 The gradient of a circuit can be computed by the same
circuit, with shifted parameters

U(o)

The parameters ¢ and s depend on the specific function. Crucially, s is large.

0p f(0) = clf(0 4 s) — f(6 — 5)]

X



This 1s not finite difference!

0p f(0) = c[f(0 + s) — f(6 — s)]

 Exact
» Shift is specific to each gate — in
general, we use a large shift

f(6+A0)—f(6—A0)

89f(9) — 2A0

Only an approximation

Requires that shift is small

Known to give rise to numerical
issues

For NISQ devices, small shifts could
lead to the resulting difference being
swamped by noise

X



Finite difference
Pr(f*)

69f ~

* |s an unbiased estimator of the function,
evaluated from sampling

Tradeoff: small shift gives a good
approximation, but large errors

Large shift gives a bad approximation,
but small errors

Af*
2A0

)

f*



Parameter shift method

Pr(f*)

Af*

Using the structure of quantum
circuits, can derive analytic recipes

Opf = cAf”




Gradient recipes for photonic QC

Gate G Heisenberg representation M9 Partial derivatives of M9
Phase rotation (I 0 0 )
M%(¢) =10 cos¢p —sing s M (¢) = S(M™(p+ Z) — M™ (¢ — 3))
i(¢) .
0 sing cos¢
Displacement . Lo 0. MP(r,6) = & (MP(r +5,6) - MP(r — 5,6)), s € R
D{'r qb) M {'-"',¢) = | 2rcos¢ 1 0 f?¢.MD(T qb) _ lH(MD[T b+ ﬂ'.) _ MD(T & — E))
' 2rsing 0 1 ’ 4 ' 2 ’ 2
: . 1 0 0
Z?:;‘.Lﬂl“ﬂ MS(T] — (D e " G) B,.M"';{r} m(Mb[ r4s)— M-S(r _ 5})’ sER
0 0 e
| doms 0 o g MAEH=R000150 N0 20)
I;IE::';Phttﬂr M0 -0 0 cos0 B _a DeMP(0,9) = 5(MP(0.9+ 5) — MP(0,¢ — 3))

0 — ] 0
“ B cosd a — cosgsinf, [ —=singsinl

0 g I 0 cost




Key Concepts

T —»| quantum f(2:0)

e Quantum nodes e




Quantum Nodes

o Classical and guantum information are distinct

« A classical processor can’t access quantum information inside a
circuit

Classical Quantum
information information
R &

+ |/ ® @\




Quantum Nodes

However, a variational circuit:

o takes classical information
as input (gate parameters)

o produces classical information
as output (expectation values)

Transforms classical data to
classical data
o Function itself may be
classically intractable

v

[}."

(01)—

=~

U(0s)

— ' H = fla

@ ']



Quantum Nodes

o QNode: common interface for
guantum and classical devices

@)

Classical device sees a callable parameterized

function

Quantum device sees fine-grained
circuit details

Xr—»

U(6a)

antum
q“no dg %f(x,e)

7(0,)

U(f)

A
quantum \I

device

- - = - = =

1
|
|
|
|
1
1
1
I
|
|
|
1
1



Quantum Nodes

« QNode enables interface between quantum computers and
classical ML libraries

o NumPy Autograd

o TensorFlow

o PyTorch
Unwrap & extract f d \ Convert back to
! QNode .
numerical value Tensor object
u : evaluate() >
Native Tensor object
(e-g. ) gradient()




Key Concepts

e Hybrid computation e




Hybrid Computation

o Quantum circuit can be just one step of a larger computation

. . . . ate
o Classical optimization loop m

{update o

o Pre-/post-process quantum circuit outputs

(B2) YiailB)

o Arbitrarily structured hybrid computations

16— _,—0
Ix>—"7—0 f

[eose), §==]

10>{0EH—-0



Hybrid Computation

Classical nodes

/

|ﬂ)‘\_,-ﬂ
l)="N=0

Why limit our thinking to simplistic hybrid
models? Should be able to compose

Quantum nodes arb|tra”|y @



Compatibility with backpropagation

« Backprop steps backwards through computational graph
« Computes gradient at each step and aggregates (chain rule)




Compatibility with backpropagation

e \When we hit a quantum node, use parameter shift method
e Can’t backprop inside a QNode, but can backprop through it
e End-to-end differentiable

0z




Hybrid Computation

Deep learning began with neural networks, but nowadays the
models are much richer

Similarly, quantum machine learning can be much richer than
current models

All the ingredients are now available. How can we get started?






Philosophy
A

CODE QUALITY A

Best-practices

L

Champion QML Push new ideas

SR )

Python interface Open-source



Pen nyLane “The TensorFlow of quantum

Release: 0.5.0-dev

X /\ N /\ D U Date: 2019-09-03

PENNYLANE
PennyLane is a cross-platform Python library for quantum machine learning, i fon, and of

« Train a quantum computer

GETTING STARTED Features

the same way as a neural ==

Plugins and ecosystem

Follow the gradient. Built-in automatic differentiation of quantum

: circuits
Research and contribution

n ( ! I WO I k Best of both worlds. Support for hybrid quantum and classical
Get Help
models

Batteries included. Provides optimization and machine learning
tools

KEY CONCEPTS.

Intreduction

Hybirld computation Device independent. The same quantum circuit model can be run

- on different backends
Quantum nodes
[ ] e S I n e O S‘ a e aS ) Compatible with existing machine learning libraries. Quantum
Variational circuits circuits can be set up to interface with either NumPy, PyTorch, or
Quantum gradients TensorFlow, allowing hybrid CPU-GPU-QPU computations.

.
References and further reading Large plugin ecosystem. Install plugins to run your computational
q u al l u I I I COI I I p u e rS g rOW I I I circuits on more devices, including Strawberry Fields, Rigetti

QUICKSTART Forest, ProjectQ, Microsoft QDK and IBM Q

Tutorials
W r Available plugins
o e USER DOLIMERTATION + PennyLane-SF: Supports integration witl Fields, a full-stack Python library for simulating continuaus
Overview

variable (CV) quantum optical circuits.

Quantum circuits

PennyLane-Forest: Supports integration with PyQuil, the Rigetti Forest SDK, and the Rij 5, an open-source
Quantum operations quantum computation framework by Rigetti. Provides device support for the Quantum Virtual Machine (QVM) and

Quantum Processing Units (QPUs) hardware devices.
Measurements
: Supports integration with Qis 2, an open-source quantum computation framework by IBM

. . .
 Compatible with multiple :
SRt Provides device support for the Qiskit Aer quantum simulators, and IBM QX hardware devices,

qu antum platforms https://github.com/XanaduAl/pennylane
https://pennylane.readthedocs.io

https://pennylane.ai



Comes with a growing plugin ecosystem, supporting a wide range
of quantum hardware and classical software

PENNY LANE OPylorch  F'TensorFlow

STRAWBERRY : : C L
FIELDS rigetti Forest %leklt

" NumPy B Microsoft Q# 4o/4g




Qubit Rotation Tutorial

The PennyLane version of “hello world”.

Goal is to build a single-qubit circuit that rotates a qubit to a desired pure

state.
0) — R, (¢1) Ry((jbz) A (o,)

z=10)




Import libraries

pennylane gml

pennylane numpy np

Important: NumPy must be imported from PennyLane to ensure compatibility with
automatic differentiation.

Basically, this allows you to use NumPy as usual.

You can also use PyTorch or TensorFlow instead of NumPy,



Create device

Wires are subsystems (because they are
Device name represented as wires in a circuit diagram)

dev = gml.device('default.qubit', wires=1)

Any computational object that can apply quantum operations and return a
measurement result is called a quantum device.

In PennyLane, a device could be a hardware device (such as the Rigetti QPU, via the
PennyLane-Forest plugin), or a software simulator (such as Strawberry Fields, via the
PennyLane-SF plugin). @



Create a gnode

Gate parameters

.qnode(dev)

circuit(params): Wire the gate

mLl.RX(params|[0 wires=0
Python decorator g (p [o], ) acts on

gml.RY(params[1l], wires=0)
gml.expval(gml.PauliZ(0))

Expectation value
output

0) —{R(¢1) Ry (¢P2) 1A (0,)

QNodes are quantum functions, described by a quantum circuit. They are bound to a
particular quantum device, which is used to evaluate expectation values of this circuit.

X



Cost function

cost(params):

expval = circuit(params)
np.abs(expval - (-1)) ** 2

Can define any differentiable NumPy function from the output of the gnode.

In this case, we want the expectation value of the circuit to be -1.



Initial parameters

params = np.random.normal(size=(2,%)

_ _ Dimension of
circuit(params) params

We can evaluate
the circuit at any
value of params

In this case, there are two rotation angles, which we initialize randomly from the
standard normal distribution.

When any gnode is evaluated, PennyLane calls the device itself to obtain the result.



Optimize the circuilt

opt = gml.AdamOptimizer()
steps = 300 Improves
parameters by

5 range(steps): gradient descent

params = opt.step(cost, params)

print('Circuit output:', circuit(params))
print('Final parameters:', params)

We can choose from a wide variety of gradient-based optimizers. In this case we
select the Adam optimizer.

The parameters are optimized one step at a time for a total of 300 steps, then printed.

X



Putting it all together

pennylane gml
pennylane numpy np

dev =

gml.device( 'default.qubit', wires=1)

.gnode(dev)
circuit(params):
gml.RX(params[0], wires=0]
gml.RY(params[1], wires=0
gml.expval(gml.PauliZ(0))
cost(params):
expval = circuit(params)
np.abs(expval - (-1)) ** 2

params = np.random.normal(size=(2,))

opt = gml.AdamOptimizer()
steps = :
i range(steps): mx
params = opt.step(cost, params) Eul
print('Circuit output:', circuit(params)) 5%
print('Final parameters:', params) 30|

@ adagrad
~@- adam
- o
@ mementum
-~ nesterov
Q- maprop

vz



Classical interfaces

pennylane gml
pennylane numpy np

= gml.device('default.qubit', wires=1)

.qnode(dev)
Ltrcuit(params):
(params[0], wire
gml.RY(params[1], wires=0
gml.expval(gml.PaulizZ(0))

t(params):
expval = circuit(params)
np.abs(expval - (-1)) **x 2
params = np.random.normal(size=(2,))
amOptimizer()

range(steps):
params = opt.step(cost, params)

torch.autograd Variable

gpu = gml.device('forest.qpu', device='Aspen-1-2Q-B')

dev, interface='torch')
C (phil, ph :
gml.RX(phil, wire
gml.RY(phi2, wire
gml.expval(gml.PauliZ(0))

ost(phil, phi2):
expval = circuit(phil, phi2)
torch.abs(expval - (-1)) ** 2
phil = Variable(torch.tensor ), requires_grad=
phi2 = Variable(torch.tensor(0.05), requiers_grad=
opt = torch.optim.Adam([phil, phi2], 1




PennyLane Summary

e Run and optimize directly on quantum
hardware (GPU—QPU)

e “Quantum-aware” implementation of
gradient descent optimization

e Hardware agnostic and extensible via
plugins
Open-source and extensively documented

Use-cases:
o  Train quantum circuits as ML models
o  Machine learning of quantum
computations
o Hybrid quantum-classical machine learning

Source code:github.com/XanaduAl/pennylane

Documentation:
pennylane.readthedocs.io

Landing page:
pennylane.ai

XANADU



Summary

Variational circuits: strong foundation for near-term QML

1 |
| |
Compute gradients of quantum circuits using : |
“parameter shift” method . !

Train quantum circuits the same as neural networks

QNode abstraction enables highly flexible hybrid classical-
guantum computation

Speed up progress via ease-of-implementation,
reusability, sharing code/models, rapid iteration

https://github.com/XanaduAl/pennylane
https://pennylane.readthedocs.io

https://pennylane.ai



~ Thank You

XANADU
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