
PennyLane: 
Automatic differentiation and Machine 
Learning of Quantum Computations 

Nathan Killoran 



ABOUT 
XANADU 



Hardware 

Building blocks: 
▪ Waveguides 
▪ Resonators 
▪ Modulators 
▪ Beam Splitters 

Software  

What we’re building: 
▪ Photonic quantum 

technologies 
▪ Integrated 

nanophotonics 
▪ Continuous-variable 

(CV)  model 

▪ Only software platform 
dedicated to photonic 
quantum computing 

▪ Three built-in 
simulators 

▪ Hardware connectivity 
(currently private 
access only) 

▪ Dedicated platform for 
quantum machine 
learning 

▪ Device agnostic: 
Xanadu, IBM, Rigetti, 
Microsoft 

▪ Connects to standard 
ML libraries: PyTorch, 
TensorFlow 



Theoretical Physics | Experimental Physics | Computational Physics | Quantum Information | Quantum Optics |  
Physical Sciences | Mathematics | Electrical Engineering | Computer Engineering | Quantum Machine Learning 

PhDs in: 

Xanadu 
Team 



Outline 
1. From machine learning to  

quantum machine learning 

 

1. Training quantum circuits 

 

 

1. PennyLane + examples 

 



LESSONS FROM  
DEEP LEARNING 



● Hardware advancements  
(GPUs, TPUs) 
 
 

 
● Workhorse algorithms  

(backpropagation, stochastic 
gradient descent) 

 
● Specialized, user-friendly software 

 

Why is Deep Learning successful? 

[Nature 521, p 436–444 (2015)] 



● Hardware advancements 

 

Why is Deep Learning successful? 



● Workhorse algorithms  

 

Why is Deep Learning successful? 

[https://shaoanlu.files.wordpress.com/2017/05/trn_loss.png] 



● Specialized, user-friendly software  

 

Why is Deep Learning successful? 



● Crowdsourced innovation 
 

● Shared code (including trained 
weights) 
 

● Compose and reuse components 
 

● Rapid iteration 
 

● New ways of thinking 
 
 
 

Other takeaways from Deep Learning 

[Rmdl: Random multimodel deep learning for classification. Proc. 2nd Int. Conf. Info. Sys. and Data 
Min. (pp. 19-28). ACM.] 

[https://www.cfr.org/blog/line-behind-billion-
people-fun-fast-and-fact-filled] 



● Hardware advancements (QPUs) 
 
 

 ● Workhorse algorithms  
(quantum-aware backpropagation, stochastic 
gradient descent) 

 
● Specialized, user-friendly software 

 

What can we leverage for 
Quantum? 



QUANTUM 
MACHINE LEARNING 



Quantum computers are good 
at: 

Optimization 

 

 

 

 

 

 

Linear algebra 

 

 

 

 

 

 

Sampling 

 

Quantum physics 

[Science 262, 218-220 (1993)] 
[https://www.mathworks.com/matlabcentral/ml
c-
downloads/downloads/submissions/46012/versio
ns/1/screenshot.jpg] 



Quantum Machine Learning 
• AI/ML already uses special-purpose processors: GPUs, TPUs, ASICs 

• Quantum computers (QPUs) could be used as special-purpose AI 
accelerators 

• May enable training of previously intractable models 

 

 



Machine Learning Quantum 
• We can adapt machine learning tools to help  

understand and build quantum computers 

• Use automatic differentiation to tune circuits 
 

• Discover new algorithms and error-correction 
strategies 
 

• Unearth new physics? 

 

 



● Everyone can easily explore and run QML algorithms 
 

● Models are widely shared (or reimplemented by others) 
 

● Reusable circuit blocks, embeddings, pre-/post-processing 
 

● Exciting QML results every single month 
 

● Feedback loop →new ideas we can’t predict today 

Vision for Quantum Machine Learning 



TRAINING  
QUANTUM CIRCUITS 



Key Concepts 

● Variational circuits 

 

● Quantum nodes 

● Hybrid computation 

● Training quantum circuits 



Key Concepts 

● Variational circuits 

 

● Quantum nodes 

● Hybrid computation 

● Training quantum circuits 



Variational Circuits 
● Main QML method for near-term (NISQ) devices 

 
● Ideas earlier began in simpler specialized forms: 

 
○ Variational Quantum Eigensolver (VQE) 

 
○ Quantum Alternating Operator Ansatz 

(QAOA) 
 

● Natural extension to other circuits and tasks  
(e.g., quantum classifier) 
 

● Nowadays many, many proposals 



Variational Circuits 

I. Preparation of a fixed initial state 
 

II. Quantum circuit; input data and free 
parameters are used as gate 
arguments 
 

III. Measurement of fixed observable 

= 

● Basic structure of a variational circuit: 



Key Concepts 

● Variational circuits 

 

● Quantum nodes 

● Hybrid computation 

● Training quantum circuits 



Differentiable computation 
• Deep learning began with neural networks, but nowadays the 

models are much richer 

○ Attention mechanisms, external memory, neural differential 
equations, etc. 

• Key insight: computation is end-to-end differentiable 

• Program only the structure of computation (“build the model”) 

• Use optimization (e.g., gradient descent) to fine-tune parameters 
(“train the model”) 



Differentiable computation 
• Quantum computing is also differentiable 

• Gates are controlled by parameters (e.g., rotation angle, 
squeezing amplitude) 

• Expectation values depend smoothly on gate parameters 

• Can we train quantum circuits? 
  

  



II.  Hardware-based 
 - No access to quantum information; only have 
     measurements & expectation values 
 - Needs to work as hardware becomes more 
powerful 
            and cannot be simulated 

 

I. Simulator-based 
 - Build simulation inside existing classical library 
 - Can leverage existing optimization & ML tools 
 - Great for small circuits, but not scalable 

How to train quantum circuits? 

Two approaches: 
 



Gradients of quantum circuits 

● Training strategy: use gradient descent algorithms  
 

● Need to compute gradients of variational circuit outputs with 
respect to their gate parameters 
 

● How can we compute gradients of quantum circuits when 
even simulating their output is classically intractable?  



The ‘parameter shift’ trick 



• Main insight: Use the same quantum hardware to 
evaluate its own gradients.  
 

• The gradient of a circuit can be computed by the same 
circuit, with shifted parameters 

Parameter shift method 

The parameters c and s depend on the specific function. Crucially, s is large. 

  

    



This is not finite difference! 

• Exact 
• Shift is specific to each gate – in 

general, we use a large shift 

• Only an approximation 
• Requires that shift is small 
• Known to give rise to numerical 

issues 
• For NISQ devices, small shifts could 

lead to the resulting difference being 
swamped by noise 



Finite difference 

Tradeoff: small shift gives a good 
approximation, but large errors  
 
Large shift gives a bad approximation, 
but small errors 

Is an unbiased estimator of the function, 
evaluated from sampling 



Parameter shift method 
Using the structure of quantum 
circuits, can derive analytic recipes 



Gradient recipes for photonic QC 



Key Concepts 

● Variational circuits 

 

● Quantum nodes 

● Hybrid computation 

● Training quantum circuits 



Quantum Nodes 

● Classical and quantum information are distinct 
 

● A classical processor can’t access quantum information inside a 
circuit 



Quantum Nodes 
● However, a variational circuit: 

○ takes classical information 
as input (gate parameters) 

○ produces classical information 
as output (expectation values) 
 

● Transforms classical data to  
classical data 
○ Function itself may be  

classically intractable 



Quantum Nodes 
● QNode: common interface for 

quantum and classical devices 
 

○ Classical device sees a callable parameterized 
function 
 

○ Quantum device sees fine-grained  
circuit details 



Quantum Nodes 
● QNode enables interface between quantum computers and 

classical ML libraries 
 

○ NumPy Autograd 
 

○ TensorFlow 
 

○ PyTorch 

QNode 

evaluate() 

gradient() 

Native Tensor object 
(e.g., torch.tensor) 

Unwrap & extract 
numerical value 

Convert back to 
Tensor object 



Key Concepts 

● Variational circuits 

 

● Quantum nodes 

● Hybrid computation 

● Training quantum circuits 



Hybrid Computation 
● Quantum circuit can be just one step of a larger computation 

 

○ Classical optimization loop 

○ Pre-/post-process quantum circuit outputs 

○ Arbitrarily structured hybrid computations 



Quantum nodes 

Classical nodes 

Why limit our thinking to simplistic hybrid 
models? Should be able to compose 
arbitrarily 

Hybrid Computation 



Compatibility with backpropagation 
● Backprop steps backwards through computational graph 
● Computes gradient at each step and aggregates (chain rule) 

 



Compatibility with backpropagation 
● When we hit a quantum node, use parameter shift method 
● Can’t backprop inside a QNode, but can backprop through it 
● End-to-end differentiable 

 



Hybrid Computation 
• Deep learning began with neural networks, but nowadays the 

models are much richer 

• Similarly, quantum machine learning can be much richer than 
current models 
 

• All the ingredients are now available. How can we get started? 



PENNYLANE 
 



Overview 

Champion QML Push new ideas 

Open-source 

Best-practices 

Python interface 

Philosophy 



• Train a quantum computer 
the same way as a neural  
network 

• Designed to scale as 
quantum computers grow in 
power 

• Compatible with multiple 
quantum platforms https://github.com/XanaduAI/pennylane 

https://pennylane.ai 

PennyLane “The TensorFlow of quantum 
computing” 

https://pennylane.readthedocs.io 



Comes with a growing plugin ecosystem, supporting a wide range 
of quantum hardware and classical software 

Q# 



Qubit Rotation Tutorial 
The PennyLane version of “hello world”. 
 
Goal is to build a single-qubit circuit that rotates a qubit to a desired pure 
state.  



Import libraries 

Important: NumPy must be imported from PennyLane to ensure compatibility with 
automatic differentiation. 
 
Basically, this allows you to use NumPy as usual. 
 
You can also use PyTorch or TensorFlow instead of NumPy. 



Create device 

Any computational object that can apply quantum operations and return a 
measurement result is called a quantum device. 

 
In PennyLane, a device could be a hardware device (such as the Rigetti QPU, via the 
PennyLane-Forest plugin), or a software simulator (such as Strawberry Fields, via the 
PennyLane-SF plugin). 
 

Wires are subsystems (because they are 
represented as wires in a circuit diagram) Device name 



Create a qnode 

QNodes are quantum functions, described by a quantum circuit. They are bound to a 
particular quantum device, which is used to evaluate expectation values of this circuit. 
 
 

Gate parameters 

Wire the gate 
acts on 

Expectation value 
output 

Python decorator 



Cost function 
 
 

Can define any differentiable NumPy function from the output of the qnode. 
 
In this case, we want the expectation value of the circuit to be -1. 
 



Initial parameters 
 
 

In this case, there are two rotation angles, which we initialize randomly from the 
standard normal distribution. 
 
When any qnode is evaluated, PennyLane calls the device itself to obtain the result. 
 
 

Dimension of  
params 

We can evaluate 
the circuit at any 
value of params 



Optimize the circuit 
 
 

We can choose from a wide variety of gradient-based optimizers. In this case we 
select the Adam optimizer. 
 
The parameters are optimized one step at a time for a total of 300 steps, then printed. 
 
 

Improves 
parameters by 
gradient descent 



Putting it all together 
 
 



Classical interfaces 

NumP
y 

PyTorc
 



PennyLane Summary 
● Run and optimize directly on quantum 

hardware (GPU→QPU) 
● “Quantum-aware” implementation of 

gradient descent optimization 
● Hardware agnostic and extensible via 

plugins 
● Open-source and extensively documented 
● Use-cases:  

○ Train quantum circuits as ML models 
○ Machine learning of  quantum 

computations 
○ Hybrid quantum-classical machine learning 

 

 

 

 

Source code: github.com/XanaduAI/pennylane 

Documentation: 
pennylane.readthedocs.io 

Landing page: 
pennylane.ai 

 

 



• Variational circuits: strong foundation for near-term QML 

• Compute gradients of quantum circuits using  
“parameter shift” method 

• Train quantum circuits the same as neural networks 

• QNode abstraction enables highly flexible hybrid classical-
quantum computation 

• Speed up progress via ease-of-implementation,  
reusability, sharing code/models, rapid iteration 

Summary 

https://github.com/XanaduAI/pennylane 

https://pennylane.ai 

https://pennylane.readthedocs.io 



Thank You 


	PennyLane:�Automatic differentiation and Machine Learning of Quantum Computations
	ABOUT XANADU
	Hardware
	Xanadu Team
	Outline
	LESSONS FROM DEEP LEARNING
	Why is Deep Learning successful?
	Why is Deep Learning successful?
	Why is Deep Learning successful?
	Why is Deep Learning successful?
	Other takeaways from Deep Learning
	What can we leverage for Quantum?
	QUANTUM MACHINE LEARNING
	Quantum computers are good at:
	Quantum Machine Learning
	Machine Learning Quantum
	Vision for Quantum Machine Learning
	TRAINING QUANTUM CIRCUITS
	Key Concepts
	Key Concepts
	Variational Circuits
	Variational Circuits
	Key Concepts
	Differentiable computation
	Differentiable computation
	How to train quantum circuits?
	Gradients of quantum circuits
	The ‘parameter shift’ trick
	Parameter shift method
	This is not finite difference!
	Finite difference
	Parameter shift method
	Gradient recipes for photonic QC
	Key Concepts
	Quantum Nodes
	Quantum Nodes
	Quantum Nodes
	Quantum Nodes
	Key Concepts
	Hybrid Computation
	Hybrid Computation
	Compatibility with backpropagation
	Compatibility with backpropagation
	Hybrid Computation
	PENNYLANE
	Overview
	PennyLane
	Comes with a growing plugin ecosystem, supporting a wide range of quantum hardware and classical software
	Qubit Rotation Tutorial
	Import libraries
	Create device
	Create a qnode
	Cost function
	Initial parameters
	Optimize the circuit
	Putting it all together
	Classical interfaces
	PennyLane Summary
	Summary
	Thank You

