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Why WATER? Because Water is a Global Issue 

Mark Twain  



The “Big” Conclusions 

• Size-selective membranes have achieved real commercial 
successes in liquid-phase separations. 

  

• Post-assembly modifications result in 
membranes that lend themselves to 
new applications. 

• Advanced manufacturing techniques can 
simplify the chemical modification and spatial 
patterning of nanostructured membranes. 

• New material platforms are pushing 
size-selective membranes to their 
physical limits. 

  



Tampa Bay Plant produces 25 MGD of freshwater. 
   

Seawater RO Desalination Produces Drinking Water 



Seawater RO Desalination Produces Drinking Water 

In excess of 5x1015 gallons of fresh water are produced annually using SWRO 

Elimelech and Phillip, Science, (2011) 



A hydraulic pressure, PH, is applied to “reverse” osmosis. 

Elimelech and Phillip, Science, (2011) 

Seawater RO Desalination Produces Drinking Water 



Applied Pressure Determines Power Consumption 

Osmotic pressure of the concentrate determines minimum applied pressure 

Elimelech and Phillip, Science, (2011) 



Seawater RO Power Consumption is Reaching Limit 

Data for desalination step only. 

Elimelech and Phillip, Science, (2011) 



Elimelech and Phillip, Science, (2011) 

Highly permeable membranes will not greatly reduce energy demand. 

Seawater RO Power Consumption is Reaching Limit 



Current Standard for Membrane Separations 
Permeate water, retain contaminants; produce potable water 

“bad” 

Zhang, Y., et al. npj Clean Water, 2018, 1, 2  



Membrane Separations Are Versatile 



Size-Selective Filtration Membranes 

Block Polymer Phase Inversion 

Zhang, Y., et al. npj Clean Water, 2018, 1, 2  



A Versatile Platform: Self-Assembled Block Polymers 

Cochran, E. W. et al. Macromolecules 2006, 39, 2449. 
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Bates, F. S.; Fredrickson, G. H., Phys. Today 1999, 52 (2), 32-38.  
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Mulvenna, R. M. et al. Journal of Membrane Science, 2014, 470, 246-256. 
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Synthetic Control Used to Target Morphology 

Cochran, E. W. et al. Macromolecules 2006, 39, 2449. 
Bates, F. S.; Fredrickson, G. H., Phys. Today 1999, 52 (2), 32-38.  



Minneapolis Ultrafiltration Plant produces 70 MGD of freshwater 
using 1.7×106 ft2 operating at 30-40 psi. 

   

Current Standard for Membrane Separation Processes 



Modules Seek to Increase Membrane Area per Volume 

Spiral wound configuration: 300 ft2/ft3  



Membranes are Cast Using a NIPS Process 
NIPS - Non-solvent Induced Phase Separation 

https://youtu.be/4LIchS4Nd1A 
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SNIPS - Self-assembly and Non-solvent Induced Phase Separation 

Membranes are Cast Using a SNIPS Process 

100 nm 



Membranes are Cast Using a SNIPS Process 
SNIPS - Self-assembly and Non-solvent Induced Phase Separation 






Modules Seek to Increase Membrane Area per Volume 

Spiral wound configuration: 300 ft2/ft3  Hollow fiber configuration: 4000 ft2/ft3  



Combining the SNIPS Process with Dip-Coating 

Zhang, Y., et al. J. Mater. Chem. A 2017, 5, 3358 






 Symmetric 
 ~200 nm-thick 

 Symmetric 
 ~1 µm-thick 

 Asymmetric 
 ~1.5 µm-thick 

Membrane Architecture is controlled by dip-coating speed and evaporation time.  
    

a b c 

a b c 

Zhang, Y., et al. J. Mater. Chem. A 2017, 5, 3358 

Process Control Can be Used to Tune Permeability, LP 
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Mulvenna, R. M. et al. Journal of Membrane Science, 2014, 470, 246-256. 

Q230 H Q229 L Q230 H Q229 

fRed 

Cochran, E. W. et al. Macromolecules 2006, 39, 2449. 
Bates, F. S.; Fredrickson, G. H., Phys. Today 1999, 52 (2), 32-38.  

Synthetic Control Can be Used to Tune Pore Size 



Synthetic Control Can be Used to Tune Pore Size 

500 nm 500 nm 

Overall MW: 43 kDa 

500 nm 

Overall MW: 77 kDa 

Dorin, R. M. et al. Polymer, 2013, 55, 347-353. 



ISV-77 
ISV-43 

Dorin, R. M. et al. Polymer, 2013, 55, 347-353. 

cfeed 

cperm emdmillipore.com 

Synthetic Control Can be Used to Tune Pore Size 

Sucrose: 342 g mol-1 

Dugas, M. R. et al. unpublished. 



Dugas, M. R. et al. unpublished. 

Proper Molecular Design Enhances Chlorine Resistance 
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Hypochlorite can be dosed into the feed to reduce biofouling 

State-of-the-Art 
Thin Film Composites 

Self-Assembled Copolymer 
Membranes 



Frostensen, S., “America's lead poisoning problem isn't just in Flint. It’s everywhere.” 
http://www.vox.com/2016/1/21/10811004/lead-poisoning-cities-us 

http://ehatlas.ische.ca/lead/human-impact/health-concerns 

New Opportunities for Membrane Separations 



In excess of 5x1015 gallons of fresh water are produced annually using SWRO 

Zhang, Y., et al. npj Clean Water, 2018, 1, 2  

New Opportunities for Membrane Separations 

Hybrid processes are needed for municipal and industrial wastewater reuse, 
resource recovery, and other emerging processes  



Functional Membrane Separations Are Versatile 

Membrane Adsorption 
 remove dilute pollutants 

Antifouling Membranes 
 extend membrane lifetimes 

Facilitated Transport 
 rapid and selective transport of solutes 
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Block Function 
Polyisoprene Increases Toughness 
Polystyrene Forms matrix 

Poly(Dimethylacrylamide) Readily functionalized for 
specific applications 

Control of End Block Enables Functionalization 

Cast 
 
Membrane 

Mulvenna, R. M. et al. Journal of Membrane Science, 2014, 470, 246-256. 



Coupling 
Chemistry 

HCl 

Pore walls can be reacted to a variety 
of functional groups (pink dots). 

Mulvenna, R. M. et. al. Journal of Membrane Science, 2014, 470, 246-256. 
 

Control of End Block Enables Functionalization 



Qu, S. et al. ACS Applied Materials & Interfaces, 2015, 7, 19746-19754 

1. Charge-Functionalized Membranes Reject Dissolved Ions 



Rathee, V. S. et al. Molecular Systems Design & Engineering, 2016, 1, 301-312. 

n 

n 

1. Molecular Simulations Capture Essential Phenomena 



2. Membrane Sorbents Capture and Release Solutes Quickly 

Zhang, Y., et al. ACS Central Science, 2018, 4, 1697–1707 






Groundwater: 0.40 mM Mg2+, 1.3 mM Ca2+, 17 mM Na+, 0.25 mM K+ 

Seawater: 54.5 mM Mg2+,10.5 mM Ca2+, 480 mM Na+, 10.2 mM K+  

Before: 
6 ppm  

Pb2+/Cd2+ 

Pb2+/Cd2+ After: 
8 ppb  

Pb2+/Cd2+ 

20 mg 

10 mL 

2. Resilient Removal of Heavy Metal Ion Contamination 



4. Controlling the Deposition of Alkyne-Terminated Reactants 

Hoffman, J.R. Mikes, A.R., et al. ACS Applied Polymer Materials, 2019, 1, 2120-2130. 
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4. Toward Multifunctional Membranes 

cross-sectional micrographs 

SEM 

Carbon map 

Chlorine map 

Hoffman, J.R., Mikes, A.R., et al. ACS Applied Polymer Materials, 2019, 1, 2120-2130. 



4. Antifouling, Valence-selective Dual-functional Membranes 

Valence-selective, Sulfonate Antifouling, Zwitterionic 

FZ 
30 sec 

DF 
20 sec  

DF 
10 sec  

DF 
5 sec  

DF FC 

FZ: Full Zwitterion 
DF: Dual-Functional 
FC: Full Charge 



4. Dual-functional Membranes Exhibit Reduced Fouling, High Rejection 

FZ 
30 sec 

DF 
20 sec  

DF 
10 sec  

DF 
5 sec  

DF FC 



5. Inkjet Printing of Charge-Patterned Mosaic Membranes 

Negatively-charged 
(upon deprotonation) 

Positively-charged  
(upon protonation) 

+ + 
+ + 

+ + 
+ + 

– – 
– – 

– – 
– – 

Gao, et al. ACS Appl. Mater. Inter. (2016) 8, 3386 



Qu, S. et al. Chemistry of Materials, 2017, 29, 762-772. 
Gao, P. et al. ACS Applied Materials & Interfaces, 2016, 8, 19772–19779. 

5. Inkjet Printing of Charge-Patterned Mosaic Membranes 



Gao, P. et al. ACS Applied Materials & Interfaces, 2016, 8, 19772–19779. 
Qu, S. et al. ACS Applied Materials & Interfaces, 2015, 7, 19746-19754 

cfeed 

cperm emdmillipore.com 

5. Inkjet Printing of Charge-Patterned Mosaic Membranes 



5. Local Variations in Potential Direct Ions Toward Membrane Surface 

Summe, M. J. et al. Molecular Systems Design & Engineering, 2018, 3, 959-969. 
Gao, F. et al. ACS Nano, 2019, 13, 7655-7664. 



Additive manufacturing is helping to reveal new scientific phenomena 

5. Interfacial Junctions Control Electrolyte Transport 



The “Big” Conclusions 

• Size-selective membranes have achieved real commercial 
successes in liquid-phase separations. 

  

• Post-assembly modifications result in 
membranes that lend themselves to 
new applications. 

• Advanced manufacturing techniques can 
simplify the chemical modification and spatial 
patterning of nanostructured membranes. 

• New material platforms are pushing 
size-selective membranes to their 
physical limits. 

  



Molecular-to-Systems Engineering 

Eugene, E., et al. Current Opinion in Chemical Engineering, 2019, ASAP  
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Thank You 
Questions? 



50 

Weidman, J.L., et al. ACS Applied Materials & Interfaces, 2017, 9, 19152–19160 

Carboxylic 
Acid 

Amide 

PASH-Functionalized Membrane Binds Heavy Metal Ions 

Weidman, J. L. et al. Langmuir, 2015, 31, 11113-11123 



Membranes Capture and Release Solutes Quickly 

Zhang, Y., et al. ACS Central Science, 2018, 4, 1697–1707 



New Functionality Through Molecular Design 
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