Self-Heating and Scaling of Silicon Nano-Transistors

Eric Pop

Advisors: Profs. Kenneth Goodson and Robert Dutton

Stanford University

E. Pop, Stanford Univ.

Summary

- Self-heating in bulk and strained silicon
- Monte Carlo code (MONET):
 - Implementation \rightarrow electron and phonon model
 - Validation \rightarrow vs. data and commercial codes
 - Results \rightarrow heat generation details
- Thermal scaling limits of nano-transistors
 - Compact model for thin-body devices
 - Electro-thermal design guidelines
 - Device geometry optimization

Why is Heat Bad for Electronics?

http://phys.ncku.edu.tw/~htsu/humor/fry_egg.html

... and for End Users

ASUSTeK cooling solution (!)

The industry now calls them "portables" not "laptops"

"The next day he noticed irritation."

Mobile/PDAs

Thermal Management Methods

System Level → Active Microchannel Cooling (Cooligy)

Circuit + Software Level → active power management

(turn parts of circuit on/off)

Transistor Level ? → electro-thermal device design

Transistor Thermal Challenges

Confined Geometries, Novel Materials

Material	k _{th} (W∕mK)
Si	148
Ge	60
Silicides	40
Si (10 nm)	13
SiO ₂	1.4

Details of Joule Heating in Silicon

Methods to Compute Heat Generation

- **Drift-diffusion:** $Q''' = \vec{J} \cdot \vec{E}$
 - Does not capture non-local transport
- Big Hydrodynamic: $Q''' = \frac{3k_B}{2} \frac{T_e T_L}{t_{e-p}} n$
 - Needs some average scatt. time
 - (Both) no info about generated phonons
- Monte Carlo:
 - Pros: Great for non-local transport
 - Complete info about generated phonons:
 - Cons: *slow* (but there are some short-cuts)

$$Q^{\prime\prime\prime} = \frac{1}{t} \frac{d}{dV} \sum \left(\hbar \boldsymbol{w}_{gen} - \hbar \boldsymbol{w}_{abs} \right)$$

Heat Generation with **MONET**

- Electrons treated as semiclassical particles, not as "fluid"
- Drift (free flight), scatter and select new state
- Must run long enough to gather useful statistics
- Main ingredients:
 - Electron energy band model
 - Phonon dispersion model
 - Device simulation:
 - Impurity scattering, Poisson equation, boundary conditions
 - Import grid from Medici (commercial drift-diffusion simulator)

Where the Present Work Fits In

Electron Energy Band Model

- \otimes Analytic "non-parabolic" band approximation (a = 0.5 eV⁻¹)
- $\ensuremath{\mathfrak{G}}$ Good choice for V_{dd} £ 1.1 V
 - No impact ionization
 - No X-L valley scattering
 - Fast and reasonable for future technologies

$$E(1+\boldsymbol{a} E) = \frac{\hbar^2}{2} \left(\frac{k_x^2}{m_x} + \frac{k_y^2}{m_y} + \frac{k_z^2}{m_z} \right)$$

Phonon Dispersion Model

Quadratic approximation

 $w(q) = w_o + v_s q + cq^2$

- Isotropic assumption
- Included for
 - intra-valley scattering rate
 - inter-valley scattering rate
 - selection of final state
- Biggin Easy to invert q = f(w)

- MONET: first analytic-band Monte Carlo code to distinguish between ALL phonon dispersion branches
- Easy to extend to other materials, strain, confinement

Electron-Phonon Scattering

- Intra-valley scattering → acoustic, E < 50 meV (Normal)</p>
- Inter-valley scattering \rightarrow 3x f- and 3x g-type phonons (Umklapp)
- Phonon (q,w) given by geometrical selection rules and dispersion

Scattering (Deformation) Potentials

E. Pop et al, J. Appl. Phys. 2004

$$\Gamma_{scat} \sim D_p^2 \left(N_q + \frac{1}{2} \mp \frac{1}{2} \right) g\left(E \pm \hbar \mathbf{w}_q \right)$$

Intra-valley

$$D_{TA} = \sqrt{\left\langle \Xi_{TA}^{2} \right\rangle}_{q} = \frac{\sqrt{p}}{4} \Xi_{u}$$
 (isotropic,
average over **q**)
$$D_{LA} = \sqrt{\left\langle \Xi_{LA}^{2} \right\rangle}_{q} = \left[\frac{p}{2} \left(\Xi_{d}^{2} + \Xi_{d}\Xi_{u} + \frac{3}{8}\Xi_{u}^{2}\right)\right]^{1/2}$$

Average values: $D_{LA} = 6.4 \text{ eV}$, $D_{TA} = 3.1 \text{ eV}$ (Empirical $X_u = 6.8 \text{ eV}$, $X_d = 1 \text{ eV}$)

Inter-valley

Phonon type	Energy (meV)	Old model [*] (x 10 ⁸ (This work eV/cm)	
f-TA	19	0.3	0.5	
f-LA	51	2	3.5**	
f-TO	57	2	1.5	
g-TA	10	0.5	0.3	
g-LA	19	0.8	1.5**	
g-LO	63	11	6**	

* old model = Jacoboni 1983

** consistent with recent ab initio calculations (Kunikiyo, Hamaguchi et al)

Validation with Bulk Si Transport Data

E. Pop et al, J. Appl. Phys. 2004

- Experimental data from [1] Canali '75, [2] Green '90
- Velocity-field agreement over 77 430 K range
- Mobility-temperature agreement over 45 600 K range

Computed Phonon Generation

E. Pop et al, SISPAD 2003, Appl. Phys. Lett. 2004

- Complete spectral information on phonon generation rates
- Note: effect of scattering selection rules (less f-scat in strained Si)
- Note: same heat generation at high-field in Si and strained Si

Evolution of Generated Phonons

S. Sinha, E. Pop et al, IMECE 2004 + Thesis work of Sanjiv Sinha

- Localized temperature near nanoscale heat generation region
- Mean free path (MFP) of emitted phonons << MFP of thermal phonons</p>
- Phonon relaxation rates depend on peak generation rate in device

1-D: "N-i-N" Device (Setup)

1-D: "N-i-N" Device (Results)

- MONET vs. Medici (commercial code):
 - "Long" (500 nm) device: same current, potential, nearly identical
 - Importance of non-local transport in short devices
 - MONET gives heat gen. rate *location* and *make-up* (optical, acoustic)

2-D: Thin Body SOI ($L_g = 18$ nm)

E. Pop, Stanford Univ.

Ph.D. Orals Aug 5th, 2004

URL: http://nanoheat.stanford.edu http://nanohub.org (soon)

"Ele Edit Wew Ge Rockmarks Tools Window Help		<u>. E</u> ile <u>E</u> d≹ ⊻jew	Go Bookmarks Ipols Window Help
S S S S http://hansheat.stanford.edu/index.html		. Q, O	🕥 🔇 💊 http://nanoheat.stanford.edu/multimedia.html 🖸 🖎 🦓
		-3	Monet fast Monte Carlo code for computing electron & phonon distributions in silicon nano-devices
nanoheat.stanford.edu		About Menet Multimodia Publications Nanoheat Links	Mavies: (rick on the image to download) This movie shows electron trajectories in momentum space. The Brillouin zone boundaries are drawn with dotted lines and the camere angle begins to change after 1.25 ps. The applied electric field is zero for the first 0.5 ps and -40 kV/cm thereafter. Note that the negatively change diectrons are accelerated in the +x direction, against the electric field. The vertical tobr bar is the electron energy space. In 24, 12, 24 Minor field
Microheat Prof. Goodson's Microscale Heat Transfer Group TCAD Prof. Dattor's TCAD Prof. Dattor's TCAD Group			This movie shows electron trajectories in real space, inside an 10 nm ultra-thin body (UTB) cilicon-on-insulator (SoU) transistor. The applied voltage is 0.8 V on the gate and drain, the source is grounded. The device was optimized (Ion=1000 u4/um and Ioff=1, u4/um) with the help of a device simulator (Nedda). The periods trajectores were then computed with Monet in the The field distribution extracted from Media). The vertical color bor is the electron energy scale. In eV. [9.3 Mb mpg Fie]
Seminars Short ist of Stanford Taks. Seminars or Colloquia			Deta: The phonon dispersion data in bulk silicon from G. Doling's 1963 paper ("Lattice Vibrations in Crystals with the Diarrond Structure"). The plot on the left can be obtained with this Madab File.
			Note: you may use these files any way you wish, just drop me an email (see the link below). Please give due credit and mention this website as nanohest stanford edu in your presentation.
	St. 75. 2023		tric Pap. October 2003
	- 1 - 1	9999	山 · 10 m

E. Pop, Stanford Univ.

Ph.D. Orals Aug 5th, 2004

What About Device Design?

Evolution of Transistor Designs

- Bulk FET: "workhorse" of semiconductor industry
- Strained Si or Ge channel: mobility improvement
- Thin Body on Insulator (SOI, GOI) and FinFET: less parasitics and better channel control, *poor thermal properties*

...transistor evolution, from a thermal perspective, is not going so well.

Somewhere, something went terribly wrong.

Ultra-Thin Body Transistor

E. Pop et al, IEDM 2003, IEDM 2004

Scaling:

$$L_{ex} \sim L_g/2$$

$$L_{sd} \sim L_g$$

$$t_{si} \sim L_g/4$$

$$t_{co} \sim 2L_g \times L_g$$

I_{on}, V_{dd}, t_{ox} from ITRS guidelines. Metal gate sets V_t

FinFET: $t_{si} \sim L_{d}/2$, $h_{fin} \sim 4t_{si}$

Thin Film Thermal Conductivity

$$k = \frac{1}{3}Cv\Lambda$$
$$\Lambda^{-1} \cong \Lambda^{-1}_{bulk} + t_{si}^{-1} + \Lambda^{-1}_{imp}$$
$$k_{bulk} = 148 \text{ W/m} \cdot \text{K} \quad (\text{Si})$$

Phonon boundary and impurity scattering

 \rightarrow strong decrease of thermal conductivity (k)

- Thin Si: 20 nm \rightarrow 22 W/m·K (expt), 10 nm \rightarrow 13 W/m·K (theory)
- Solution Assume $t_{si} \sim L_{q}/4$ for fully depleted thin-body SOI devices

Metal-Ox-Si Thermal Resistance

Where does MOS <u>boundary</u> thermal resistance come from?

- Phonon dispersion mismatch between materials
- Phonon (dielectric) \rightarrow electron (metal) heat carrier conversion at boundary
- Small (metal) grains or atomic roughness at boundary

Contact and Via Thermal Resistance

- Significant for small contact area
- Wafers (Kelvin probes) from T.I.
- Electrical resistance thermometry
- I-V measurements at various T:

 $T \rightarrow R_{el}(T)$, then $R_{el}(P=IV) \rightarrow T(P) \rightarrow R_{th}$

Lumped Thermal Resistance R_{th} ~ 1.1 x 10⁵ K/W (from via to thermal ground)

Self-Consistent Electro-Thermal Model

$$I \sim \mathbf{m} \times (V_{dd} - V_t)^n - 0.7 \text{ mV/K}$$

Temperature Rise along ITRS

E. Pop et al, IEDM 2003

- Jenkins '04: exp. observed DT = 100 °C (DC) in 100 nm SOI
- Plot source-side DT with S/D height (t_{sD}) as parameter
- Raised Source/Drain (S/D) adopted to reduce electrical R_{series}
- Extra thickness (t_{sD}) also reduces S/D *thermal* resistance \rightarrow lower device T (with fixed L_{ex} ~ L_g/2)

SOI Comparison with FinFET

FinFET vs. SOI, thermally speaking:

- Fin height assumed ~ $L_g \rightarrow k_{th}^- \rightarrow T$ -
- 2x thicker body \rightarrow k_{th} \rightarrow T⁻
- 2x oxide area $\rightarrow R_{ox}/2 \rightarrow T^{-}$

SOI Comparison with G(ermanium)-O-I

E. Pop, C.O. Chui et al, IEDM 2004

- Thin film k_{Ge} < k_{Si} but not as badly as in bulk (60 vs. 148 W/m·K)
- **Ge has 2x mobility advantage, 40% lower V_{dd}, lower power**
- ⊗ GOI devices \rightarrow assume $t_{Ge} = 3/4t_{Si}$ where $t_{Si} = L_g/4$
- T about same, Ge retains mobility + current advantage

Extension and Raised Drain Design

- Choose channel extension length L_{ex} and S/D thickness t_{SD}
- Ideally want (*thermally*) \rightarrow short L_{ex} and raised t_{SD}
- But... must also consider gate-drain capacitance, dopant diffusion, spacer control, silicide thickness

Intrinsic Gate Delay Optimization

E. Pop et al, IEDM 2004

- Delay not lower for S/D > 3-4 x t_{film}
- **Optimal extension length** $\sim L_q/2$
- Optimized GOI devices 30% faster than optimized SOI

Role of Contact Resistance and Power

- In the Boost State S
- ITRS guidelines for power too high for shrinking device volumes
 - (either) Lower power reqt. (e.g. quadratically) for smallest SOI
 - (or) Use sparingly, operate at very low duty factor

Summary

- Self-heating in bulk and strained silicon
- Monte Carlo code (MONET):
 - Implementation \rightarrow electron and phonon model
 - Validation \rightarrow vs. data and commercial codes
 - Results \rightarrow heat generation spectrum
 - \rightarrow location and make-up of drain hotspot
- Thermal scaling limits of nano-transistors
 - Compact model for thin body devices
 - Electro-thermal geometry optimization
 - FinFET, GOI advantage over SOI

Contributions

- E. Pop, K. E. Goodson, R. W. Dutton, "Analytic Band Monte Carlo Model for Electron Transport in Si Including Acoustic and Optical Phonon Dispersion," (to appear) *J. Appl. Phys.*, vol. 96, no. 7, Oct. 1st 2004
- E. Pop, C. O. Chui, S. Sinha, R. W. Dutton, K. E. Goodson, "Electro-Thermal Comparison and Performance Optimization of Thin-Body SOI and GOI MOSFETs," (submitted to) *IEDM 2004*
- S. Sinha, E. Pop, K. E. Goodson, "A split-flux model for phonon transport near hotspots," IMECE 2004
- E. Pop, R. W. Dutton, K. E. Goodson, "Compact Thermal Model for Ultra-Thin Body SOI Devices," (submitted to) *Electron Device Letters*, 2004
- E. Pop, K. E. Goodson, R. W. Dutton, "Thermal Analysis of Ultra-Thin Body Device Scaling," IEDM 2003
- E. Pop, K. E. Goodson, R. W. Dutton, "Detailed Heat Generation Simulations via the Monte Carlo Method," SISPAD 2003
- E. Pop, K. E. Goodson, R. W. Dutton, "Monte Carlo Simulation of Heat Generation in Silicon Nano-Devices," SRC TechCon 2003, (Best Paper in Session Award)
- E. Pop, S. Sinha, K. E. Goodson, "Monte Carlo Modeling of Heat Generation in Electronic Nanostructures," *IMECE 2002*
- E. Pop, "Heat Generation in Three- and Two-Dimensional Nanostructures," SRC GFP Conference 2002, (Outstanding Research Presentation Award)
- E. Pop, K. Banerjee, P.G. Sverdrup, R. W. Dutton, K. E. Goodson, "Localized Heating Effects and Scaling of Sub-0.18 Micron CMOS Devices," *IEDM 2001*

Acknowledgements

- Profs. Ken Goodson, Bob Dutton
- Profs. Krishna Saraswat, K.J. Cho, Jim Harris
- Profs. Antoniadis, del Alamo, Senturia (MIT), Lundstrom (Purdue), Ravaioli (UIUC)
- © Collaborators: Sanjiv Sinha, Chi On Chui, Reza Navid
- "CC" Gichane-Bell and Fely Barrera
- Dutton group, Goodson group
- Industry: P. Cottrell, M. Fischetti, S. Laux, R. Miller, P. Oldiges, Z. Ren (IBM), Z. Krivokapic, C. Riccobene (AMD), C. Duvvury (TI), J. Hutchby (SRC)
- The Semiconductor Research Corporation (SRC)
- Friends: Al, Alex², Andre³, Andrea, Audrey, Bon, Brian, Carl, Carol, Christina, Chuan-Mei, D-Dogg, Dave⁴, Diana, Eilene, Elio, Eric², Eunice, Fred, Gaurav, George, Heather, Hetal, Jack, Jacob, Jake, Jakov, James, Jane, Jason, Jean, Johan, John², Kevin², Kirsty, Lauren, Lucian, Magnus, Mark², Maya, Megan, Mehrshad, Mike², Orges, Pedro, Pete, Quincy, Rachel², Ramy, Randy, Rob, Ryan, Sam, Sarah², Scott, Sumita, Svava, Tako, Vijay, Vincent², Will, Whitney, Yvonne
- KZSU 90.1 FM
- Family: mom, dad, Lia

Thank You!