Appendix B

NanoTreatment Cards

Note: Print these cards on cardstock and laminate them for repeated use.

Water Contaminant B

Coliform bacteria

Source: Soils, plants, animals, human sewage, agricultural and storm runoff.

Hazards: Most coliform bacteria do not cause disease, but are an easy way to monitor for more dangerous organisms that cause diarrhea.

Size: 500-2000 nm

Dominant force(s): Gravity, Electrostatic (influenced weakly by charge)

Water Contaminant V

Viruses

Source: Fecal matter, animal urine

Hazards: Hepatitis, meningitis, colds, gastroenteritis.

Size: 27-35 nm

Dominant force(s): Electrostatic (influenced by charge) electrostatic interactions, which are sensitive to pH and salt concentrations

Water Contaminant S

Salts

Source: Contact with the ground and oceans in the water cycle

Hazards: Drinking salt water causes dehydration, nausea, weakness, and possible death.

Size: 0.09-0.206 nm

Dominant force(s): Electrostatic, (influenced strongly by charge)

Water Contaminant P

Pesticides

Source: Runoff from pesticide application, water treatment plants (chlorine), pesticide disposal.

Hazards: Effects depend on type, amount, and duration of exposure, but include cancer, nerve damage, and hormone disruption.

Size: 0.240-0.750 nm

Dominant force(s): Electrostatic (influenced by charge), larger ones are influenced by gravity

Water Contaminant L

Lead (Pb++ or Pb+)

Source: Lead pipes and solder that is used to connect pipes. Leaded gasoline.

Hazards: Mental and physical development delays in children; high blood pressure and kidney problems in adults.

Size: 0.079-0.143 nm

Dominant force(s): Electrostatic (influenced heavily by charge)

Water Contaminant M

Methylmercury

Source: Industrial processing of coal and metals contributes mercury to aquatic systems where it complexes to form methylmercury. It is biomagnified in these food chains.

Hazards: Impaired neurological development in children (for example, thinking, memory, attention, language, and fine motor and visual spatial skills)

Size: 0.110-0.133 nm

Dominant force(s): Electrostatic (influenced by charge)

Water Contaminant C

Source: Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints.

Hazards: Kidney damage

Size: 0.092–0.124 nm

Dominant force(s): Electrostatic (influenced heavily by charge)

Water Contaminant Y

Cyanide (CN⁻)

Source: Industrial contamination from production of paper, textiles, plastics

Hazards: Lowers B12 levels, prevents cells from using oxygen, disrupts thyroid and nervous system function.

Size: 0.090 nm

Dominant force(s): Electrostatic (influenced heavily by charge)

Nanotechnology: Activated Carbon / Activated Charcoal

Potential

 Effective adsorbent of a variety of nonpolar substances—typically taste and odor.

Risks

- Non-toxic
- Does not affect metals, Cyanide, or alcohol; destroyed by high or low pH

Subject to forces: Electrostatic (influenced weakly by charge)

Size: 2–50 nm

Image: Activated Charcoal through a Scanning Electron Microscope

Credit: http://upload.wikimedia.org/wikipedia/commons/thumb/6/65/Activated_Charcoal.jpg/300px-Activated_Charcoal.jpg

Nanotechnology: Nanobiocides

Potential

- Nanobiocides such as metal nanoparticles and engineered nanomaterials are successfully incorporated into nanofibers showing high antimicrobial activity and stability in water.
- Titanium dioxide nanoparticles break down common organic contaminants such as hormones, pharmaceuticals, or manure when exposed to light
- Nano-sized Silver is used to kill bacteria.

Risks

- Creation of free radicals and silver chloride in the body
- Cellular death
- Accumulation in the liver
- Smaller particles are more reactive than larger ones

Subject to forces: Electrostatic (influenced heavily by charge)

Size: I to I00 nm

Image: Titanium Dioxide nanofiber spiral

Credit: http://upload.wikimedia.org/wikipedia/commons/thumb/2/25/Titanium_dioxide_nanofiber_spiral.jpg/220px-Titanium_dioxide_nanofiber_spiral.jpg

Nanotechnology: Nano-cellulose filter

Potential:

- From plants or bacteria
- Transparent, electrically conductive, stronger than steel
- Nanocellulose can filter out nitrates in city water, paint dye residues in printing and textiles, and metal ions from industrial waste. It has also been shown to remove virus particles.

Risks:

- Biodegradable
- Inert
 - Non-toxic
 - Stable in wide range of pH

Subject to forces:

Size: 5-20 nm x 10 nm to several micrometers

Image: Carboxymethylated nanocellulose

https://en.wikipedia.org/wiki/Nanocellulose#/media/File:AF M_Innventia_nanocellulose.JPG

Nanotechnology: Electrospun Nanofibers

Potential

 Useful in filtration—these fibers can be built into membranes with a high surface area.
Also, the material being spun can be manipulated to give control over pore size and modification of the surface chemistry.

Risks

• May carry similar risks to manufacturers as asbestos fibers: cancer

Subject to forces: Varies depending on composition.

Size: 10-1,000 nm

Image: Electrospun Nanofibers

Credit: http://upload.wikimedia.org/wikipedia/commons/thumb/d/db/N2_2.kesit.JPG/220px-N2_2.kesit.JPG

Nanotechnology: Nanoporous membrane

Potential:

These self-assembled membranes are used to desalinate saltwater, and remove molecules such as micro-pollutants and pharmaceutical residues from water.

www.nanowerk.com/news2/newsid=29282.php

Risks:

Subject to forces:

Size: 3 - 15 nm

Image: Nanopore membrane

