Thermoelectric Energy Conversion: Science and Engineering Challenges and Opportun

Arun Majumdar

Departments of Mechanical Engineering & Materials Science & Engineering (courtesy), Stanford University Department of Photon Science, SLAC

Thermoelectricity & Energy Conversion

Bermuda Triangle of Thermoelectrics

Engineering

Grou

Thermoelectrics Program Review August 2009

How do we reduce k

k = Cvl/3

C = 2x10⁶ J/m³-K - Dulong-Petit v = 2000-4000 m/s l = 0.2-0.5 nm (atomic scale)

k_{min} = 0.25-1 W/m-K

Vineis, Shakouri, Majumdar, Kanatzidis, *Adv. Materials* **22**, 3970 (20

Engineering

ls with large DOS _BTs from E_F

Carrier concentration

i. USA 139, July 1996 ences

is part of a special series of Inaugural Articles by members of the National Academy of Sciences 25, 1995.

thermoelectric

and J. O. Sofo[‡]

s and Astronomy, The University of Tennessee, Knoxville, TN 37996-1200; [†]Solid State Division, Oak Ridge National Laboratory, P.O. Box ;7831-6030; and [‡]Instituto Balseiro, Centro Atomico Bariloche, (8400) Bariloche, Argentina Degenerate Semiconductors ultra-low k (e.g., localization

Carrier concentration

 $k_{min} < 1 W/m-K$

iguishable from magic." Arthur C. Clarke

 $ZT = \frac{S^2 \sigma T}{\sigma}$

Hinterleitner et al., Nature (2019)

Engineering

r Groud

Is there a killer application for thermoelectrics?

Power Generation from Waste Heat Recovery (100 °C – 800 °C)

Refrigeration & Heat Pumps (10-60 °C)

Efficiency of Current Heat Engine

Henry & Prasher, Energy & Env. Science (2014)

d ENGINEERING

Group

Carbon-Free Power Generation

Engineering

Group

Global Warming Potential of Refrigerants

n oddly named index that measures (but not in actual ditioning — in some of the world's largest urban areas. **bold**.

MI	LLIONS)	ANNUAL	COOLING DEGREE DAYS
1	6.9	3,954	
c	6.6	3,884	
ı	5.1	3,745	
1	5.1	3,514	
1	10.7	3,438	
1	13.2	3,390	
1	18.2	3,386	
1	6.1	3,221	
1	14.3	3,211	
i	11.6	3,136	
i	15.0	2,881	
1	10.9	2,653	
ı.	12.4	2,560	
i	5.4	2,423	
)	11.5	2,401	
1	6.5	2,280	
I	5.9	2,142	
ŝ	7.0	2,107	
1	7.2	2,107	
•	6.0	2,098	
1	8.4	2,072	
)	11.1	1,833	
I	5.3	1,654	
I	6.3	1,309	
I	7.3	1,282	
1	7.1	1,277	
1	6.4	1,189	
I	18.3	1,187	
1	11.3	1,180	
i	14.5	1,129	
1	7.0	965	
)	35.2	938	
I.	7.2	906	
5	10.7	840	
5	12.3	837	
1	5.6	805	
I	9.6	746	

Finding the right refrigerant with GWP < 1 is a grand challenge

Velders et al., PNAS (200

ACTION FACT SHEET

The Kigali Amendment to the Montreal Protocol: HFC Phase-down

Refrigeration Technology

Engineering

at Engines er Generation & Cooling

DS >0

Liquid-Vapor: Thermoelectric: Electrocaloric: Magnetocaloric: Electrochemical: Chemical:

DS, configurational entropy of gas DS, configurational entropy of electrons in DS, orientational entropy of electric dipoles DS, orientational entropy of magnetic dipo DS, entropy of solvent-solute in redox react DS, entropy of oxidizing/reducing medium

Entropy

r Group

Entropy of Energy Carriers & Excitations

Water Liquid-Vapor: DS = 6.3 kJ/kg-K ≅ 1.17 mV/K

Is this the theoretical limit for

Continuous Electrochemical Heat Engines

r Group

Redox Couple	α (
$Fe(CN)_{6}^{3-/4-}$	
D	

Andre

Ian McKay

DS > 1.17 mV/K More than liquid-vapor phase trans

Methyl viologen (2+/1+)

 $\mathrm{Fe}^{2+/3+}$

V^{2+/3+}

Poletayev, McKay, Chueh, Majumdar, Energy & Env Sci (2018)

ble from magic." Arthur C. Clarke

Entropy Changes in Nature

d ENGINEERING

Experimental Set Up

PLING OF TRANSPORT & ENTROPY

crochemical redox reactions uctance of proton exchange membrane perative heat exchanger

Β

Continuous Electrochemical Heat Engine

Recuperative Heat Exchange

Currently abo 20% of Carno limit

Estimates of 60-70% of Carnot limit w better heat exchangers

Redox Refrigeration

Q_H Q_H 🔶 е-Т_н **Parasitic heat** Red. Ox conduction Temperature, *T* Parasitic heat conduction 2000 Electrode 2 (-* e $Fe(CN)_6^3 \rightarrow Fe$ 1500 도 <u>특</u> 1000 ► **Electrolyte** convection Electrode 1 (+) T_{c} 500 $Fe(CN)_6^4 \rightarrow Fe$ Q_c Q_c Entropy, S Entropy, S 500 1000 1mm IIII Electrolyte flow μm

McKay, Kunz, Majumdar, Redox Refrigeration, Scientific Reports (2019).

Ian McKay

d ENGINEERING

Group

Redox Refrigeration with Flow

No Flow

Group

1 mm/s Flow

Engineering

Classification of Redox Refrigerants

 $= [\Delta S(J/mol \cdot K)T(K) - E \downarrow a (J/mol)] \times C(mol/kg)/c \downarrow p (J/kg \cdot K)$

	Redox reaction	α, mV/K	$YT = \Delta T_{max} @300K, K$	Q _{g/b}
ble Thermodynamics	$2\mathrm{H}^++2\mathrm{e}^- \rightarrow \mathrm{H}_2(\mathrm{g})$	0.8	307	4.09,2
mol·K)·C(mol/kg)/c↓p(J/	$V^{3+}+e^{-} \rightarrow V^{2+}$	1.2-1.9*	36	6.027
$YT = DT_{max}$	$V^{5+}+e^- \rightarrow V^{4+}$	-0.2*	6	2.427
	$Br_2(l) + e^- \rightarrow 2Br^-$	0.3*	14	1.7 ²⁸
	$Fe(CN)_6^{3-} + e^- \rightarrow Fe(CN)_6^{4-}$	-1.5*	10.6	78.42
	$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$	1.1*	36	95.7 ³
=∆ <i>S(J/mol·K)I(K)/E↓a(J/mol)</i> ≤ 1	$Cr^{3+}+e^{-} \rightarrow Cr^{2+}$	2.2	7	219.5
1	$Ce^{5+}+e^{-} \rightarrow Ce^{4+}$	2.3	13	36.09
	$S_2^{2-} + 2e^- \rightarrow 2S^{2-}$	7	9.4	1.39,3
11				

C ENGINEERING Engineering

Is there a killer application for thermoelectrics?

Power Generation from Waste Heat Recovery (100 °C – 800 °C)

Refrigeration & Heat Pumps (10-60 °C)

SCIENCE ADVANCES | RESEARCH ARTICLE

ENGINEERING

Wearable thermoelectrics for personalized thermoregulation

Sahngki Hong^{1,2}, Yue Gu^{1,3}, Joon Kyo Seo^{1,3}, Joseph Wang^{1,3}, Ping Liu^{1,3}, Y. Shirley Meng^{1,3,4}, Sheng Xu^{1,3}*, Renkun Chen^{1,2,4}*

r Grou

