Sensitivity & Resolution of Quantum-Enhanced Imaging: Decoherence, Coherence, and Ancillas

Bahaa Saleh

University of Central Florida

Sensitivity & Resolution of Quantum-Enhanced Imaging: Decoherence, Coherence, and Ancillas

Outline

Brief overview of quantum-enhanced sensing & imaging

Quantum limits on precision of phase measurement: combatting decoherence with ancilla

Quantum limits on precision of phase-gradient measurement: Role of beam size

Quantum limits on two-point resolution: coherence resurrects Rayleigh's curse

Outline

Brief overview of quantum-enhanced sensing & imaging

Quantum limits on precision of phase measurement: combatting decoherence with ancilla

Quantum limits on precision of phase-gradient measurement: Role of beam size

2

Quantum limits on two-point resolution: coherence resurrects Rayleigh's curse

Quantum Sensing and Imaging

 Measurement of a physical parameter (sensing) or the spatial distribution of a physical parameter (imaging) by use of light in a nonclassical state with precision exceeding that attained by classical means.

Fundamental limits on the precision are dictated by the quantum state of the probing field

Taxonomy of Quantum states of light

Taxonomy of Sensing Configurations

7

UCF

CREOL The College of Optics & Photonics

Taxonomy of Imaging Configurations

Amplitude Imaging

CREOL The College of Optics & Photonics

CREOL The College of Optics & Photonics

UCF

The image-inversion interferometer

Larson, Tabiryan, Saleh, Opt Exp 27, 5685 (Feb 2019)

for R & L polarizations

10

7 applications of the image-inversion interferometer

Larson, Tabiryan, Saleh, Opt Exp 27, 5685 (2019)

Quantum spatial parity modes Classical & quantum spatial mode Mux/DeMux

. . .

. .

Abouraddy, Yarnal, Saleh, Teich, PRA 75, 052114 (2007)

12

Coherent (anti-correlated)

Yarnal, Abouraddy, Saleh, Teich. Opt Exp 16, 7634 (2008)

15

App 7 Wigner Distribution Function

Mukamel, Banaszek, Walmsley, Dorrer, Opt Lett. 28, 1317 (2003)

Single-photon & two-photon optics

Single-Photon Optics

A photon is described by a wave function $\psi(\mathbf{r}, t)$ obeying the same classical laws of propagation as the optical field $E(\mathbf{r}, t)$ (wave equation)

 $|\psi(\mathbf{r},t)|^2$ = probability density of detecting the photon at position \mathbf{r} and time t

Same applies to polarization: A single photon is described by a Jones vector $\begin{bmatrix} \alpha_H \\ \alpha_V \end{bmatrix}$ or the state $\alpha_H | H \rangle + \alpha_V | V \rangle$

In sensing/imaging application, a single photon (repeated) sensing/imaging offers:

- Better accuracy (no shot noise!)
- Security (QKD)
- But imperfect quantum efficiency of detectors introduces deletion noise

Two-Photon Optics

Two-photon light is described by a wave function of two positions and two times $\psi(\mathbf{r}_1, t_1; \mathbf{r}_1, t_2)$

 $|\psi(\mathbf{r}_1, t_1; \mathbf{r}_1, t_2)|^2 =$ probability density that the photons are detected at times t_1 and t_2

 ψ obeys the same classical laws of propagation of the correlation function $G^{(2,0)}(\mathbf{r}_1, t_1; \mathbf{r}_1, t_2) = \langle E(\mathbf{r}_1, t_1)E(\mathbf{r}_1, t_2) \rangle$ of coherence theory (Wolf equation)

For polarization $\alpha_{HH}|HH\rangle + \alpha_{HV}|HV\rangle + \alpha_{VH}|VH\rangle + \alpha_{VV}|VV\rangle$

 $\left| \alpha_{ij} \right|^2$ = probability density that the photons are detected with polarization *i* and *j*

Entanglement = non-separability of the two-photon wavefunction $\psi(\mathbf{r}_1, t_1; \mathbf{r}_1, t_2)$

Coherence = separability of the coherence function $G^{(2,0)}(\mathbf{r}_1, t_1; \mathbf{r}_1, t_2)$

Saleh, Teich, Sergienko, PRL 94, 223601 (2005)

Entanglement: a resource for quantum sensing & imaging

Temporal/spectral entanglement

Arrival time of each photon is totally uncertain, but the photons always arrive together.

Each of photon is broadband, but the sum $\omega_1 + \omega_2$ is monochromatic

Spatial/angular entanglement

Photons are emitted from the same random position

Direction of each photon is random, but perfectly correlated with direction of the other photon

Polarization entanglement

Each photon is unpolarized, but the polarizations are always orthogonal

Two-photon optics of the beam splitter

22 U

Hong-Ou-Mandel Interferometer

Measurement of time delay with fs precision Hong, Ou, Mandel 87

A few principles from classical & quantum estimation theory

Classical

If a parameter ϕ is to be estimated based on measured outcome m, and $p(m|\phi) =$ conditional probability of measuring m given ϕ , then

the variance of σ_{ϕ}^2 of any unbiased estimate $\hat{\phi}$ of ϕ satisfies:

$$\sigma_{\phi}^2 \geq \frac{1}{F(\phi)}$$
 Cramér-Rao (CR) bound

$$F(\phi) = \sum_{m} \frac{1}{p(m|\phi)} \left[\frac{\partial}{\partial \phi} p(m|\phi) \right]^2$$

Fisher information

Quantum

For a quantum state dependent on an unknown parameter ϕ ,

$$\sigma_{\phi}^2 \geq \frac{1}{F_Q(\phi)}$$
 Quantum Cramer-Rao (QCR) bound

Carl W. Helstrom

 $F_Q(\phi) =$ Quantum Fisher Information (QFI)

The QCR bound is the absolute limit on precision of estimates of ϕ for any quantum measurement

The QFI

For a pure

state
$$|\psi\rangle$$
 $F_Q(\phi) = 4\langle \psi' | \psi' \rangle - 4 |\langle \psi | \psi' \rangle|^2$ $|\psi' \rangle = \frac{d}{d\phi} |\psi\rangle$

For a mixed state ρ

$$F_Q(\phi) = \mathrm{Tr}\left(\rho \mathcal{L}^2\right)$$

 \mathcal{L} = symmetric logarithmic derivative (SLD) satisfies: $d\rho/d\phi = \frac{1}{2}(\mathcal{L}\rho + \rho\mathcal{L})$

Brief overview of quantum-enhanced sensing & imaging

Quantum limits on precision of phase measurement: combatting decoherence with ancilla

Quantum limits on precision of phase-gradient measurement: Role of beam size

Quantum limits on two-point resolution: coherence resurrects Rayleigh's curse

Quantum bounds on Phase Estimation

Single photon (or coherent state with an average of one photon)

$$|\psi\rangle = |1\rangle \qquad \phi \qquad (|\psi\rangle = \frac{1}{\sqrt{2}} \left(e^{i\phi} |1,0\rangle + |0,1\rangle \right)$$

 $F_Q^{(1p)}(\phi) = 1$ $\sigma_{\phi} = 1$

Classical Limit (CL) Or Standard Quantum Limit (SQL)

CREOL The College of Optics & Photonics

Phase estimation by use of an MZ interferometer

$$F^{(1p)}(\phi) = 1 = F_Q^{(1p)}(\phi)$$
$$\sigma_{\phi} = 1$$

Two photons $p_{d} = p(2,0) + p(0,2) = \sin^{2} 2\phi$ $p_{c} = p(1,1) = \cos^{2} 2\phi$ $F^{(2p)}(\phi) = 4 = F_{Q}^{(2p)}(\phi)$ $\sigma_{\phi} = \frac{1}{2}$

CREOL The College of Optics & Photonics

N photons in N00N State

$$\frac{1}{\sqrt{2}}(|N,0\rangle + |0,N\rangle)$$

$$N00N-State$$

$$\frac{1}{\sqrt{2}}(e^{iN\phi}|N,0\rangle + |0,N\rangle)$$

$$F^{(Np)}(\phi) = F_Q^{(Np)}(\phi) = N^2$$

Factor of *N* more sensitive to phase φ than a classical MZI

 $\sigma_{\varphi} = \frac{1}{N}$

Effect of decoherence on sensitivity

Super-sensitivity diminishes in the presence of decoherence

The "Depolarizing" channel model of decoherence

$$\rho_{\text{mixed}} = \sum_{i=1}^{1} E_i \,\rho_{\text{pure}} E_i^{\dagger}$$

$$E_2 = \frac{1}{2}\sqrt{p} \sigma_x \qquad E_3 = \frac{1}{2}\sqrt{p} \sigma_y \qquad E_4 = \frac{1}{2}\sqrt{p} \sigma_z$$

I = identity matrix,

 $E_1 = \sqrt{1 - \frac{3}{4}p} \mathrm{I}$

 σ_i = Pauli matrices p = measure

p = measure of level of decoherence

30

Even very weak decoherence destroys sensitivity at certain phases (blind spots)

We can use a reference phase that shifts the measurement to a more sensitive phase difference, but this requires prior knowledge of the phase and an adaptive estimation procedure.

31

Restoration of 2-photon super-sensitivity by use of a polarization ancilla (Hilbert space of dimension 4 instead of 2)

Two photons *entangled* in path & polarization controlled by waveplates α_1, α_2 Waveplates at angles β_1 , β_2 + polarization analyzers

Estimation is based on measurement of:

- coincident photons at pairs of detectors, and
- double photons at each detector

Precision at each ϕ is maximized over waveplate parameters $\alpha_1, \alpha_2, \beta_1, \beta_2$

Result

Ancillary DoF helps. Photon number is not the only commodity in quantum-optical parameter estimation!

Larson, Saleh, PRA 96, 042110 (2017)

<mark>33</mark>

Brief overview of quantum-enhanced sensing & imaging

Quantum limits on precision of phase measurement: combatting decoherence with ancilla

3

Quantum limits on precision of phase-gradient measurement: Role of beam size

Quantum limits on two-point resolution: coherence resurrects Rayleigh's curse

Precision bounds for measurement of phase gradient

Quantum Fisher information for estimating the phase Gradient (wavefront tilt) $\boldsymbol{\theta}$

$$\varphi(x) = \varphi_0 + \theta x$$

Single-photon beam

$$\left|\psi\right\rangle = \int dx \ e^{-i\theta x}\psi_0\left(x\right)\left|x\right\rangle$$

$$F_Q^{(1p)}(\theta) = 4\sigma_x^2$$
 $\sigma_\theta = \frac{1}{2\sigma_x}$ $\sigma_x \sigma_\theta = \frac{1}{2}$

Two-photon beam (entangled)

$$|\psi\rangle = \iint dx_1 \, dx_2 \, \psi_0 \, (x_1, x_2) \, e^{-i\theta(x_1 + x_2)} \, |x_1, x_2\rangle$$
$$f_0(x_1) \, \delta(x_1 - x_2)$$

$$F_Q^{(2p)}(\theta) = 16\,\sigma_x^2 \qquad \sigma_\theta = \frac{1}{4\sigma_x} \qquad \sigma_x \sigma_\theta =$$

Factor of 2 advantage

4

Fisher information for measurement of θ using an image-inversion interferometer & binary measurement

CREOL The College of Optics & Photonics

36

Factor of 2 advantage is lost for large beam width

Larson, Saleh ArXiv paper 1908.03145 (2019)

³⁷ UCF

Quantum Fisher information

Single photon $F_Q^{(1p)}(\varphi_0) = 1$ $F_Q^{(1p)}(\theta) = \sigma_x^2$

Two photons

$$F_Q^{(2p)}(\varphi_0) = 4$$
 $F_Q^{(2p)}(\theta) = 16\sigma_x^2$

Concurrent estimation of phase φ_0 and phase gradient θ

Single photon

39

UCF

Concurrent estimation of phase φ_0 and phase gradient θ

Single photon

Concurrent estimation of phase $arphi_0$ and phase gradient heta

Single photon

$$F^{(1p)}(\theta) = \sigma_x^2$$

Concurrent estimation of phase $arphi_0$ and phase gradient heta

Two photons

Wavefront division

Brief overview of quantum-enhanced sensing & imaging

Quantum limits on precision of phase measurement: combatting decoherence with ancilla

Quantum limits on precision of phase-gradient measurement: Role of beam size

Quantum limits on two-point resolution: coherence resurrects Rayleigh's curse Best precision of estimates of *s* based on measurement of the intensity or the photon probability distribution

Assuming classical light with an average of one photon.

$$I(x) = \frac{1}{2}(|h_{+}(x)|^{2} + |h_{-}(x)|^{2})$$
$$h_{\pm}(x) = h\left(x \pm \frac{s}{2}\right)$$

Or one-photon quantum state

 $\rho(s) = \frac{1}{2} \int dx [|h_{+}(x)|^{2} + |h_{-}(x)|^{2}] |x\rangle \langle x|$

Best precision of estimates of the distance between two incoherent point sources from optimal quantum measurement of the image-plane field

 $h_{\pm}(x) = h\left(x \pm \frac{s}{2}\right)$

One-photon state $\rho(s) = \frac{1}{2} \int dx [|h_{+}(x)|^{2} + |h_{-}(x)|^{2}] |x\rangle \langle x|$

Configuration using an image inversion interferometer and binary measurement

46

Precision bounds on estimates of distance between two partially coherent point sources

 $f(x) = \frac{1}{2}(|h_{+}(x)|^{2} + |h_{-}(x)|^{2} + \gamma \operatorname{Re}\{h_{+}^{*}(x)h_{-}(x)\}$ $h_+(x) = h\left(x \pm \frac{s}{2}\right)$ Degree of coherence $\hat{\rho} = p\hat{\rho}_c + (1-p)\hat{\rho}_i$ $\hat{\hat{\rho}}_{i} = \frac{1}{2} \left(\left| \psi_{+} \right\rangle \left\langle \psi_{+} \right| + \left| \psi_{-} \right\rangle \left\langle \psi_{-} \right| \right)$ $\hat{
ho}_{c}=\ket{\psi_{c}}ra{\psi_{c}}$ $|\psi_c\rangle \propto |\psi_+\rangle \pm |\psi_-\rangle \qquad |\psi_\pm\rangle = \int dx \, h_\pm(x) \, |x\rangle \qquad h_\pm(x) = h\left(x \pm \frac{s}{2}\right)$ $\gamma = \pm \frac{p}{p + (1 - p)(1 \pm d)}$ $d = \langle \psi_{-} | \psi_{+} \rangle$

Classica

Quantum

Quantum precision bound (Optimal field measurement)

S

If the correlation coefficient γ is precisely known, then positive correlation reduces the precision, while anti-correlation enhances the precision. If γ is to be estimated concurrently with s, then the curse resurges.

CREOL The College of Optics & Photonics

 σ

Concluding Remarks

Optical fields in nonclassical states enable enhanced-precision sensing/imaging

- Quadrature squeezed, photon-number squeezed (sub-Poisson)
- Fixed photon number (sub-shot noise)
- Fixed photon number with entanglement in one or more degrees of freedom (DoF)
 - Spatial (ghost imaging)
 - Spatial/path (phase imaging with NOON state)
 - Temporal (HOM for dispersion-cancelled imaging)
 - Polarization (quantum ellipsometry)

An ancillary degrees of freedom can be useful

- Decoherence in one DoF may be combated by entanglement with an ancillary DoF (larger Hilbert space)
- An ancillary DoF enables decoherence-free communication
- An ancillary DoF enables concurrent quantum estimation of non-commuting variables

Optimal quantum estimation is highly sensitive to accuracy of other parameters of the model

- If other parameters of the model are not known exactly, use of multiparameter estimation theory is necessary.
- Multiparameter estimation may or may not constitute independent estimation problems.

Optimal quantum estimation may be achieved with simple binary projections!

- Estimation of distance between two incoherent sources (transversely or axially displaced)
- Estimation of phase and phase gradient

Thank you!

besaleh@creol.ucf.edu

