ECE595 / STAT598: Machine Learning I
 Lecture 3.1: Regression with Kernels - Kernel Method

Spring 2020
Stanley Chan
School of Electrical and Computer Engineering
Purdue University

Outline

Outline

Mathematical Background

- Lecture 1: Linear regression: A basic data analytic tool
- Lecture 2: Regularization: Constraining the solution
- Lecture 3: Kernel Method: Enabling nonlinearity

Lecture 3: Kernel Method

- Kernel Method
- Dual Form
- Kernel Trick
- Algorithm
- Examples
- Radial Basis Function (RBF)
- Regression using RBF
- Kernel Methods in Classification

Why Another Method?

- Linear regression: Pick a global model, best fit globally.
- Kernel method: Pick a local model, best fit locally.
- In kernel method, instead of picking a line / a quadratic equation, we pick a kernel.
- A kernel is a measure of distance between training samples.
- Kernel method buys us the ability to handle nonlinearity.
- Ordinary regression is based on the columns (features) of \boldsymbol{A}.
- Kernel method is based on the rows (samples) of \boldsymbol{A}.

Pictorial Illustration

goal: learn the surface prediction: When new sample comes. Titerporate on the surface

Overview of the Method

Model Parameter:

- We want the model parameter $\widehat{\boldsymbol{\theta}}$ to look like: (How? Question 1)

$$
\widehat{\boldsymbol{\theta}}=\sum_{n=1}^{N} \alpha_{n} \boldsymbol{x}^{n}
$$

- This model expresses $\widehat{\boldsymbol{\theta}}$ as a combination of the samples.
- The trainable parameters are α_{n}, where $n=1, \ldots, N$.
- If we can make α_{n} local, i.e., non-zero for only a few of them, then we can achieve our goal: localized, sample-dependent.

Predicted Value

- The predicted value of a new sample \boldsymbol{x} is

$$
\widehat{y}=\widehat{\boldsymbol{\theta}}^{T} \boldsymbol{x}=\sum_{n=1}^{N} \alpha_{n}\left\langle\boldsymbol{x}, \boldsymbol{x}^{n}\right\rangle .
$$

- We want this model to encapsulate nonlinearity. (How? Question 2)

Dual Form of Linear Regression

Goal: Addresses Question 1: Express $\widehat{\boldsymbol{\theta}}$ as

$$
\widehat{\boldsymbol{\theta}}=\sum_{n=1}^{N} \alpha_{n} \boldsymbol{x}^{n}
$$

We start by listing out a technical lemma:
Lemma
For any $\boldsymbol{A} \in \mathbb{R}^{N \times d}, \boldsymbol{y} \in \mathbb{R}^{d}$, and $\lambda>0$,

$$
\begin{equation*}
\left(\boldsymbol{A}^{T} \boldsymbol{A}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{A}^{T} \boldsymbol{y}=\boldsymbol{A}^{T}\left(\boldsymbol{A} \boldsymbol{A}^{T}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{y} \tag{1}
\end{equation*}
$$

Proof: See Appendix.
Remark:

- The dimensions of \boldsymbol{I} on the left is $d \times d$, on the right is $N \times N$.
- If $\lambda=0$, then the above is true only when \boldsymbol{A} is invertible.

Dual Form of Linear Regression

- Using the Lemma, we can show that

$$
\begin{aligned}
\widehat{\boldsymbol{\theta}} & =\left(\boldsymbol{A}^{T} \boldsymbol{A}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{A}^{T} \boldsymbol{y} \quad \text { (Primal Form) } \\
& =\boldsymbol{A}^{T} \underbrace{\left(\boldsymbol{A} \boldsymbol{A}^{T}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{y}}_{\stackrel{\text { def }}{=} \boldsymbol{\alpha}} \quad \text { (Dual Form) } \\
& =\left[\begin{array}{ccc}
- & \left(\boldsymbol{x}^{1}\right)^{T} & - \\
- & \left(\boldsymbol{x}^{2}\right)^{T} & - \\
\vdots \\
- & \left(\boldsymbol{x}^{N}\right)^{T} & -
\end{array}\right]^{T}\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{N}
\end{array}\right]=\sum_{n=1}^{N} \alpha_{n} \boldsymbol{x}^{n}, \quad \alpha_{n} \stackrel{\text { def }}{=}\left[\left(\boldsymbol{A}^{T}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{y}\right]
\end{aligned}
$$

$=$ combination of samples

The Kernel Trick

Goal: Addresses Question 2: Introduce nonlinearity to

$$
\widehat{y}=\widehat{\boldsymbol{\theta}}^{T} \boldsymbol{x}=\sum_{n=1}^{N} \alpha_{n}\left\langle\boldsymbol{x}, \boldsymbol{x}^{n}\right\rangle
$$

The Idea:

- Replace the inner product $\left\langle\boldsymbol{x}, \boldsymbol{x}^{n}\right\rangle$ by $k\left(\boldsymbol{x}, \boldsymbol{x}^{n}\right)$:

$$
\widehat{\boldsymbol{y}}=\widehat{\boldsymbol{\theta}}^{T} \boldsymbol{x}=\sum_{n=1}^{N} \alpha_{n} k\left(\boldsymbol{x}, \boldsymbol{x}^{n}\right)
$$

- $k(\cdot, \cdot)$ is called a kernel.
- A kernel is a measure of the distance between two samples \boldsymbol{x}^{i} and \boldsymbol{x}^{j}.
- $\left\langle\boldsymbol{x}^{i}, \boldsymbol{x}^{j}\right\rangle$ measure distance in the ambient space, $k\left(\boldsymbol{x}^{i}, \boldsymbol{x}^{j}\right)$ measure distance in a transformed space.
- In particular, a valid kernel takes the form $k\left(\boldsymbol{x}^{i}, \boldsymbol{x}^{j}\right)=\left\langle\phi\left(\boldsymbol{x}^{i}\right), \phi\left(\boldsymbol{x}^{j}\right)\right\rangle$ for some nonlinear transforms ϕ.

Kernels Illustrated

- A kernel typically lifts the ambient dimension to a higher one.
- For example, mapping from \mathbb{R}^{2} to \mathbb{R}^{3}

$$
\boldsymbol{x}^{n}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \text { and } \quad \phi\left(\boldsymbol{x}_{n}\right)=\left[\begin{array}{c}
x_{1}^{2} \\
x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right]
$$

Relationship between Kernel and Transform

Consider the following kernel $k(\boldsymbol{u}, \boldsymbol{v})=\left(\boldsymbol{u}^{T} \boldsymbol{v}\right)^{2}$. What is the transform?

- Suppose \boldsymbol{u} and \boldsymbol{v} are in \mathbb{R}^{2}. Then $\left(\boldsymbol{u}^{T} \boldsymbol{v}\right)^{2}$ is

$$
\begin{aligned}
\left(\boldsymbol{u}^{T} \boldsymbol{v}\right)^{2} & =\left(\sum_{i=1}^{2} u_{i} v_{i}\right)\left(\sum_{j=1}^{2} u_{j} v_{j}\right) \\
& =\sum_{i=1}^{2} \sum_{j=1}^{2}\left(u_{i} u_{j}\right)\left(v_{i} v_{j}\right)=\left[\begin{array}{llll}
u_{1}^{2} & u_{1} u_{2} & u_{2} u_{1} & u_{2}^{2}
\end{array}\right]\left[\begin{array}{c}
v_{1}^{2} \\
v_{1} v_{2} \\
v_{2} v_{1} \\
v_{2}^{2}
\end{array}\right] .
\end{aligned}
$$

- So if we define ϕ as

$$
\boldsymbol{u}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad \mapsto \quad \phi(\boldsymbol{u})=\left[\begin{array}{c}
u_{1}^{2} \\
u_{1} u_{2} \\
u_{2} u_{1} \\
u_{2}^{2}
\end{array}\right]
$$

then $\left(\boldsymbol{u}^{T} \boldsymbol{v}\right)^{2}=\langle\phi(\boldsymbol{u}), \phi(\boldsymbol{v})\rangle$.

Radial Basis Function

A useful kernel is the radial basis kernel (RBF):

$$
k(\boldsymbol{u}, \boldsymbol{v})=\exp \left\{-\frac{\|\boldsymbol{u}-\boldsymbol{v}\|^{2}}{2 \sigma^{2}}\right\}
$$

- The corresponding nonlinear transform of RBF is infinite dimensional. See Appendix.
- $\|\boldsymbol{u}-\boldsymbol{v}\|^{2}$ measures the distance between two data points \boldsymbol{u} and \boldsymbol{v}.
- σ is the std dev, defining "far" and "close".
- RBF enforces local structure; Only a few samples are used.

Kernel Method

Given the choice of the kernel function, we can write down the algorithm as follows.
(1) Pick a kernel function $k(\cdot, \cdot)$.
(2) Construct a kernel matrix $\boldsymbol{K} \in \mathbb{R}^{N \times N}$, where $[\boldsymbol{K}]_{i j}=k\left(\boldsymbol{x}^{i}, \boldsymbol{x}^{j}\right)$, for $i=1, \ldots, N$ and $j=1, \ldots, N$.
(3) Compute the coefficients $\boldsymbol{\alpha} \in \mathbb{R}^{N}$, with

$$
\alpha_{n}=\left[(\boldsymbol{K}+\lambda \boldsymbol{I})^{-1} \boldsymbol{y}\right]_{n} .
$$

(1) Estimate the predicted value for a new sample \boldsymbol{x} :

$$
g_{\boldsymbol{\theta}}(\boldsymbol{x})=\sum_{n=1}^{N} \alpha_{n} k\left(\boldsymbol{x}, \boldsymbol{x}^{n}\right)
$$

Therefore, the choice of the regression function is shifted to the choice of the kernel.

