ECE 595: Machine Learning I
 Lecture 4.1: Intro to Optimization - Unconstrained Optimization

Spring 2020
Stanley Chan
School of Electrical and Computer Engineering Purdue University

PURDUE

Outline

Outline

Mathematical Background

- Lecture 4: Intro to Optimization
- Lecture 5: Gradient Descent

Lecture 4: Intro to Optimization

- Unconstrained Optimization
- First Order Optimality
- Second Order Optimality
- Convexity
- What is convexity?
- Convex optimization
- Constrained Optimization
- Lagrangian
- Examples

Unconstrained Optimization

$$
\underset{x \in \mathcal{X}}{\operatorname{minimize}} f(x)
$$

- $x^{*} \in \mathcal{X}$ is a global minimizer if

$$
\text { - } f\left(x^{*}\right) \leq f(x) \text { for any } x \in \mathcal{X}
$$

- $x^{*} \in \mathcal{X}$ is a local minimizer if
- $f\left(\boldsymbol{x}^{*}\right) \leq f(\boldsymbol{x})$, for any \boldsymbol{x} in a neighborhood $\mathcal{B}_{\delta}\left(\boldsymbol{x}^{*}\right)$
- $\mathcal{B}_{\delta}\left(\boldsymbol{x}^{*}\right)=\left\{\boldsymbol{x} \mid\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{2} \leq \delta\right\}$

Uniqueness of Global Minimizer

If \boldsymbol{x}^{*} is global minimizer, then

- Objective value $f\left(x^{*}\right)$ is unique
- Solution x^{*} is not necessarily unique

Therefore:

- Suppose $f(\boldsymbol{x})=g(\boldsymbol{x})+\lambda\|\boldsymbol{x}\|_{1}$ for some convex g.
- "minimize $f(x)$ " has a global optimal $f\left(x^{*}\right)$.
- But there could be multiple \boldsymbol{x}^{*} 's.
- Some \boldsymbol{x}^{*} maybe better, but not in the sense of $f(\boldsymbol{x})$.

First and Second Order Optimality

$\underbrace{\nabla f\left(\boldsymbol{x}^{*}\right)}_{\text {order co }}$

Necessary Condition:

If \boldsymbol{x}^{*} is a global (or local) minimizer, then

- $\nabla f\left(\boldsymbol{x}^{*}\right)=\mathbf{0}$.
- $\nabla^{2} f\left(x^{*}\right) \succeq 0$.

Sufficient Condition:

If \boldsymbol{x}^{*} satisfies

- $\nabla f\left(\boldsymbol{x}^{*}\right)=\mathbf{0}$.
- $\nabla^{2} f\left(x^{*}\right) \succ 0$.
then \boldsymbol{x}^{*} is a global (or local) minimizer.

Why? First Order

- Why is $\nabla f\left(\boldsymbol{x}^{*}\right)=\mathbf{0}$ necessary?
- Suppose \boldsymbol{x}^{*} is the minimizer.
- Pick any direction \boldsymbol{d}, and any step size ϵ. Then

$$
f\left(\boldsymbol{x}^{*}+\epsilon \boldsymbol{d}\right)=f\left(\boldsymbol{x}^{*}\right)+\epsilon \nabla f\left(\boldsymbol{x}^{*}\right)^{T} \boldsymbol{d}+\mathcal{O}\left(\epsilon^{2}\right) .
$$

- Rearranging the terms yields

$$
\underbrace{\lim _{\epsilon \rightarrow 0}\left\{\frac{f\left(\boldsymbol{x}^{*}+\epsilon \boldsymbol{d}\right)-f\left(\boldsymbol{x}^{*}\right)}{\epsilon}\right\}}_{\geq 0, \forall \boldsymbol{d}}=\nabla f\left(\boldsymbol{x}^{*}\right)^{T} \boldsymbol{d} .
$$

- So $\nabla f\left(\boldsymbol{x}^{*}\right)^{T} \boldsymbol{d} \geq 0$ for all \boldsymbol{d}. True only when $\nabla f\left(\boldsymbol{x}^{*}\right)=\mathbf{0}$.

First Order Condition Illustrated

if x^{*} is not optimal, then
$\nabla f\left(x^{-}\right)^{\top} d \leqslant 0$, for some d

if x^{*} is optimal, then $\nabla f\left(x^{*}\right)^{\top} d=0$, for all d

Why? Second Order

Do third order approximation:

$$
f\left(\boldsymbol{x}^{*}+\epsilon \boldsymbol{d}\right)=f\left(\boldsymbol{x}^{*}\right)+\epsilon \underbrace{\nabla f\left(\boldsymbol{x}^{*}\right)^{T} \boldsymbol{d}}_{=0}+\frac{\epsilon^{2}}{2} \boldsymbol{d}^{T} \nabla^{2} f\left(\boldsymbol{x}^{*}\right) \boldsymbol{d}+\frac{\epsilon^{3}}{6} \mathcal{O}\left(\|\boldsymbol{d}\|^{3}\right)
$$

Therefore,

$$
\begin{aligned}
\frac{1}{\epsilon^{2}}\left[f\left(\boldsymbol{x}^{*}+\epsilon \boldsymbol{d}\right)-f\left(\boldsymbol{x}^{*}\right)\right] & =\frac{1}{2} \boldsymbol{d}^{T} \nabla^{2} f\left(\boldsymbol{x}^{*}\right) \boldsymbol{d}+\left[\frac{\epsilon}{6} \mathcal{O}\left(\|\boldsymbol{d}\|^{3}\right)\right] \\
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{2}} \underbrace{\left[f\left(\boldsymbol{x}^{*}+\epsilon \boldsymbol{d}\right)-f\left(\boldsymbol{x}^{*}\right)\right]}_{\geq 0} & =\frac{1}{2} \boldsymbol{d}^{T} \nabla^{2} f\left(\boldsymbol{x}^{*}\right) \boldsymbol{d}+\lim _{\epsilon \rightarrow 0}\left[\frac{\epsilon}{6} \mathcal{O}\left(\|\boldsymbol{d}\|^{3}\right)\right],
\end{aligned}
$$

Hence,

$$
\frac{1}{2} \boldsymbol{d}^{T} \nabla^{2} f\left(\boldsymbol{x}^{*}\right) \boldsymbol{d} \geq 0, \quad \forall \boldsymbol{d}
$$

\Rightarrow positive semi-definite!

Second Order Condition Illustrated

if positive definite, then minimum point

