ECE 595: Machine Learning I
 Lecture 4.2: Intro to Optimization - Convexity

Spring 2020
Stanley Chan

School of Electrical and Computer Engineering Purdue University

PURDUE

Outline

Mathematical Background

- Lecture 4: Intro to Optimization
- Lecture 5: Gradient Descent

Lecture 4: Intro to Optimization

- Unconstrained Optimization
- First Order Optimality
- Second Order Optimality
- Convexity
- What is convexity?
- Convex optimization
- Constrained Optimization
- Lagrangian
- Examples

Most Optimization Problems are Not Easy

Minimize the log-sum-exp function:

$$
f(\boldsymbol{x})=\log \left(\sum_{i=1}^{m} \exp \left(\boldsymbol{a}_{i}^{T} \boldsymbol{x}+b_{i}\right)\right)
$$

- Gradient is (exercise)

$$
\nabla f\left(\boldsymbol{x}^{*}\right)=\frac{1}{\sum_{j=1}^{m} \exp \left(\boldsymbol{a}_{j}^{T} \boldsymbol{x}^{*}+b_{j}\right)} \sum_{i=1}^{m} \exp \left(\boldsymbol{a}_{i}^{T} \boldsymbol{x}^{*}+b_{i}\right) \boldsymbol{a}_{i}
$$

- Non-linear equation. No closed-form solution.
- Need iterative algorithms, e.g., gradient descent.
- Or off-the-shelf optimization solver, e.g., CVX.

CVX Demonstration

- Disciplined optimization: It translates the problem for you.
- Developed by S. Boyd and colleagues (Stanford).
- E.g., Minimize $f(\boldsymbol{x})=\log \left(\sum_{i=1}^{n} \exp \left(\boldsymbol{a}_{i}^{T} \boldsymbol{x}+b_{i}\right)\right)+\lambda\|\boldsymbol{x}\|^{2}$.

```
import cvxpy as cp
import numpy as np
n = 100
d = 3
A = np.random.randn(n, d)
b = np.random.randn(n)
lambda_ = 0.1
x = cp.Variable(d)
objective = cp.Minimize(cp.log_sum_exp(A*x - b) + lambda_*cp.sum_squares(x))
constraints = []
prob = cp.Problem(objective, constraints)
optimal_objective_value = prob.solve()
print(optimal_objective_value)
print(x.value)
```


Convex Function

Definition

Let $\boldsymbol{x} \in \mathcal{X}$ and $\boldsymbol{y} \in \mathcal{X}$. Let $0 \leq \lambda \leq 1$. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex over \mathcal{X} if

$$
f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) \leq \lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y}) .
$$

The function is called strictly convex if " \leq " is replaced by " $<$ ".

Example: Which one is convex?

Verifying Convexity

Any of the following conditions is necessary and sufficient for convexity:
(1) By definition:

$$
f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) \leq \lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y})
$$

- Function value is lower than the line.
(2) First Order Convexity:

$$
f(\boldsymbol{y}) \geq f(\boldsymbol{x})+\nabla f(\boldsymbol{x})^{T}(\boldsymbol{y}-\boldsymbol{x}), \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{X}
$$

- Tangent line is always lower than the function
(3) Second Order Convexity: f is convex over \mathcal{X} if and only if

$$
\nabla^{2} f(x) \succeq 0 \quad \forall x \in \mathcal{X}
$$

- Curvature is positive.

Tangent Line Condition Illustrated

