ECE 595: Machine Learning I
 Lecture 4.3: Intro to Optimization - Constrained Optimization

Spring 2020
Stanley Chan
School of Electrical and Computer Engineering Purdue University

PURDUE

Outline

Mathematical Background

- Lecture 4: Intro to Optimization
- Lecture 5: Gradient Descent

Lecture 4: Intro to Optimization

- Unconstrained Optimization
- First Order Optimality
- Second Order Optimality
- Convexity
- What is convexity?
- Convex optimization
- Constrained Optimization
- Lagrangian
- Examples

Constrained Optimization

Equality Constrained Optimization:

$$
\begin{aligned}
& \underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{minimize}} f(\boldsymbol{x}) \\
& \text { subject to } h_{j}(\boldsymbol{x})=0, \quad j=1, \ldots, k .
\end{aligned}
$$

Requires a function: Lagrangian function

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} f(\boldsymbol{x})-\sum_{j=1}^{k} \nu_{j} h_{j}(\boldsymbol{x})
$$

$\boldsymbol{\nu}=\left[\nu_{1}, \ldots, \nu_{k}\right]$: Lagrange multipliers or the dual variables.
Solution $\left(\boldsymbol{x}^{*}, \boldsymbol{\nu}^{*}\right)$ satisfies

$$
\begin{aligned}
& \nabla_{\boldsymbol{x}} \mathcal{L}\left(\boldsymbol{x}^{*}, \boldsymbol{\nu}^{*}\right)=\mathbf{0} \\
& \nabla_{\boldsymbol{\nu}} \mathcal{L}\left(\boldsymbol{x}^{*}, \boldsymbol{\nu}^{*}\right)=\mathbf{0}
\end{aligned}
$$

Example: Illustrating Lagrangian

- Consider the problem

$$
\begin{gathered}
\underset{x}{\operatorname{minimize}} x_{1}+x_{2} \\
\text { subject to } x_{1}^{2}+x_{2}^{2}=2 .
\end{gathered}
$$

- Minimizer is $\boldsymbol{x}=(-1,-1)$.

Example: Illustrating Lagrangian

Example: Illustrating Lagrangian

$$
\begin{aligned}
& \nabla f\left(x^{*}\right)=\lambda \nabla h\left(x^{*}\right) \\
& \Rightarrow \nabla \mathcal{L}\left(x^{*}, \lambda^{*}\right) \\
& \quad=\nabla f\left(x^{*}\right)-\lambda \nabla h\left(x^{*}\right)=0
\end{aligned}
$$

Example: ℓ_{2}-minimization with constraint

$$
\operatorname{minimize}_{\boldsymbol{x} \in \mathbb{R}^{n}} \frac{1}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|^{2}, \quad \text { subject to } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y} .
$$

The Lagrangian function of the problem is

$$
\mathcal{L}(x, \nu)=\frac{1}{2}\left\|x-x_{0}\right\|^{2}-\nu^{T}(A x-y)
$$

The first order optimality condition requires

$$
\begin{aligned}
& \nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\nu})=\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)-\boldsymbol{A}^{T} \boldsymbol{\nu}=\mathbf{0} \\
& \nabla_{\boldsymbol{\nu}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\nu})=\boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}=\mathbf{0}
\end{aligned}
$$

Multiply the first equation by \boldsymbol{A} on both sides:

$$
\begin{array}{rlrl}
& \Rightarrow & \boldsymbol{A}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)-\boldsymbol{A A ^ { T }} \boldsymbol{\nu} & =\mathbf{0} \\
\Rightarrow & \underbrace{\boldsymbol{A} \boldsymbol{x}}_{=\boldsymbol{y}}-\boldsymbol{A} \boldsymbol{x}_{0} & =\boldsymbol{A} \boldsymbol{A}^{T} \boldsymbol{\nu} \\
\Rightarrow & \boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}_{0} & =\boldsymbol{A} \boldsymbol{A}^{T} \boldsymbol{\nu} \\
\Rightarrow & \left(\boldsymbol{A} \boldsymbol{A}^{T}\right)^{-1}\left(\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}_{0}\right) & =\boldsymbol{\nu}
\end{array}
$$

Example: ℓ_{2}-minimization with constraint

$$
\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{minimize}} \frac{1}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|^{2}, \quad \text { subject to } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}
$$

The first order optimality condition requires

$$
\begin{aligned}
& \nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\nu})=\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)-\boldsymbol{A}^{T} \boldsymbol{\nu}=\mathbf{0} \\
& \nabla_{\boldsymbol{\nu}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\nu})=\boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}=\mathbf{0}
\end{aligned}
$$

We just showed: $\boldsymbol{\nu}=\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)^{-1}\left(\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}_{0}\right)$. Substituting this result into the first order optimality yields

$$
\begin{aligned}
\boldsymbol{x} & =\boldsymbol{x}_{0}+\boldsymbol{A}^{T} \boldsymbol{\nu} \\
& =\boldsymbol{x}_{0}+\boldsymbol{A}^{T}\left(\boldsymbol{A A ^ { T }}\right)^{-1}\left(\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}_{0}\right)
\end{aligned}
$$

Therefore, the solution is $\boldsymbol{x}=\boldsymbol{x}_{0}+\boldsymbol{A}^{T}\left(\boldsymbol{A A ^ { T }}\right)^{-1}\left(\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}_{0}\right)$.

Special Case

$$
\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{minimize}} \frac{1}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|^{2}, \quad \text { subject to } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}
$$

Special case: When $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}$ is simplified to $\boldsymbol{w}^{\top} \boldsymbol{x}=0$.

- $\boldsymbol{w}^{T} \boldsymbol{x}=0$ is a line.
- Find a point \boldsymbol{x} on the line that is closest to \boldsymbol{x}_{0}.
- Solution is

$$
\begin{aligned}
\boldsymbol{x} & =\boldsymbol{x}_{0}+\boldsymbol{w}\left(\boldsymbol{w}^{T} \boldsymbol{w}\right)^{-1}\left(0-\boldsymbol{w}^{T} \boldsymbol{x}_{0}\right) \\
& =\boldsymbol{x}_{0}-\left(\frac{\boldsymbol{w}^{T} \boldsymbol{x}_{0}}{\|\boldsymbol{w}\|^{2}}\right)^{T} \boldsymbol{w}
\end{aligned}
$$

In practice ...

- Use CVX to solve problem
- Here is a MATLAB code
- Exercise: Turn it into Python.

```
% MATLAB code: Use CVX to solve min ||x - x0||, s.t. Ax = y
m = 3; n = 2*m;
A = randn(m,n); xstar = randn(n,1);
y = A*xstar;
x0 = randn(n,1);
cvx_begin
    variable x(n)
    minimize( norm(x-x0) )
    subject to
        A*x == y;
cvx_end
% you may compare with the solution x0 + A'*inv(A*A')*(y-A*x0).
```


Reading List

Unconstrained Optimality Conditions

- Nocedal-Wright, Numerical Optimization. (Chapter 2.1)
- Boyd-Vandenberghe, Convex Optimization. (Chapter 9.1)

Convexity

- Nocedal-Wright, Numerical Optimization. (Chapter 1)
- Boyd-Vandenberghe, Convex Optimization. (Chapter 2 and 3)
- CMU, Convex Optimization (Lecture 2 and 4) https://www.stat.cmu.edu/~ryantibs/convexopt-F18/
- Stanford CS 229 (Tutorial) http://cs229.stanford.edu/section/cs229-cvxopt.pdf
- UCSD ECE 273 (Tutorial)
http://eceweb.ucsd.edu/~gert/ECE273/CvxOptTutPaper.pdf
Constrained Optimization
- Nocedal-Wright, Numerical Optimization. (Chapter 12.1)

