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Mathematical Background

Lecture 4: Intro to Optimization

Lecture 5: Gradient Descent

Lecture 5: Gradient Descent

Gradient Descent

Descent Direction
Step Size
Convergence

Stochastic Gradient Descent

Difference between GD and SGD
Why does SGD work?
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Gradient Descent

The algorithm:

x (t+1) = x (t) − α(t)∇f (x (t)), t = 0, 1, 2, . . . ,

where α(t) is called the step size.
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Why is the direction −∇f (x)?

Recall (Lecture 4): If x∗ is optimal, then

lim
ε→0

1

ε
[f (x∗ + εd )− f (x∗)]︸ ︷︷ ︸

≥0, ∀d

= ∇f (x∗)Td

=⇒ ∇f (x∗)Td ≥ 0, ∀d

But if x (t) is not optimal, then we want

f (x (t) + εd ) ≤ f (x (t))

So,

lim
ε→0

1

ε

[
f (x (t) + εd )− f (x (t))

]
︸ ︷︷ ︸

≤0, for some d

= ∇f (x (t))Td

=⇒ ∇f (x (t))Td ≤ 0
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Descent Direction

Pictorial illustration:

∇f (x) is perpendicular to the contour.

A search direction d can either be on the positive side ∇f (x)Td ≥ 0
or negative side ∇f (x)Td < 0.

Only those on the negative side can reduce the cost.

All such d ’s are called the descent directions.
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The Steepest d

Previous slide: If x (t) is not optimal yet, then some d will give

∇f (x (t))Td ≤ 0.

So, let us make ∇f (x (t))T as negative as possible.

d (t) = argmin
‖d‖2=δ

∇f (x (t))Td ,

We need δ to control the magnitude; Otherwise d is unbounded.

The solution is
d (t) = −∇f (x (t))

Why? By Cauchy Schwarz,

∇f (x (t))Td ≥ −‖∇f (x (t))‖2‖d‖2.

Minimum attained when d = −∇f (x (t)).

Set δ = ‖∇f (x (t))‖2.
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Steepest Descent Direction

Pictorial illustration:

Put a ball surrounding the current point.

All d ’s inside the ball are feasible.

Pick the one that minimizes ∇f (x)Td .

This direction must be parallel (but opposite sign) to ∇f (x).
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Step Size

The algorithm:

x (t+1) = x (t) − α(t)∇f (x (t)), t = 0, 1, 2, . . . ,

where α(t) is called the step size.

1. Fixed step size
α(t) = α.

2. Exact line search

α(t) = argmin
α

f
(
x (t) + αd (t)

)
,

E.g., if f (x) = 1
2x

THx + cTx , then

α(t) = −∇f (x (t))Td (t)

d (t)THd (t)
.

3. Inexact line search:
Amijo / Wolfe conditions. See Nocedal-Wright Chapter 3.1.
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Convergence

Let x∗ be the global minimizer. Assume the followings:

Assume f is twice differentiable so that ∇2f exist.

Assume 0 � λminI � ∇2f (x) � λmaxI for all x ∈ Rn

Run gradient descent with exact line search.

Then, (Nocedal-Wright Chapter 3, Theorem 3.3)

f (x (t+1))− f (x∗) ≤
(

1− λmin

λmax

)2 (
f (x (t))− f (x∗)

)
≤
(

1− λmin

λmax

)4 (
f (x (t−1))− f (x∗)

)
≤

...

≤
(

1− λmin

λmax

)2t (
f (x (1))− f (x∗)

)
.

Thus, f (x (t))→ f (x∗) as t →∞.
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Understanding Convergence

Gradient descent can be viewed as successive approximation.
Approximate the function as

f (x t + d ) ≈ f (x t) +∇f (x t)Td +
1

2α
‖d‖2.

We can show that the d that minimizes f (x t + d ) is d = −α∇f (x t).
This suggests: Use a quadratic function to locally approximate f .
Converge when curvature α of the approximation is not too big.
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Advice on Gradient Descent

Gradient descent is useful because

Simple to implement (compared to ADMM, FISTA, etc)
Low computational cost per iteration (no matrix inversion)
Requires only first order derivative (no Hessian)
Gradient is available in deep networks (via back propagation)

Most machine learning has built-in (stochastic) gradient descents

Welcome to implement your own, but you need to be careful

Convex non-differentiable problems, e.g., `1-norm
Non-convex problem, e.g., ReLU in deep network
Trap by local minima
Inappropriate step size, a.k.a. learning rate

Consider more “transparent” algorithms such as CVX when

Formulating problems. No need to worry about algorithm.
Trying to obtain insights.


