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Stochastic Gradient Descent

Most loss functions in machine learning problems are separable:

J(θ) =
1

N

N∑
n=1

L(gθ(xn), yn) =
1

N

N∑
n=1

Jn(θ). (1)

For example,

Square-loss:

J(θ) =
N∑

n=1

(gθ(xn)− yn)2

Cross-entropy loss:

J(θ) = −
N∑

n=1

{
yn log gθ(xn) + (1− yn) log(1− gθ(xn))

}
Logistic loss:

J(θ) =
N∑

n=1

log(1 + e−y
nθT xn

)
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Full Gradient VS Partial Gradient

Vanilla gradient descent:

θt+1 = θt − ηt∇J(θt)︸ ︷︷ ︸
main computation

. (2)

The full gradient of the loss is

∇J(θ) =
1

N

N∑
n=1

∇Jn(θ) (3)

Stochastic gradient descent:

∇J(θ) ≈ 1

|B|
∑
n∈B
∇Jn(θ) (4)

where B ⊆ {1, . . . ,N} is a random subset. |B| = batch size.
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SGD Algorithm

Algorithm (Stochastic Gradient Descent)

1 Given {(xn, yn) | n = 1, . . . ,N}.
2 Initialize θ (zero or random)
3 For t = 1, 2, 3, . . .

Draw a random subset B ⊆ {1, . . . ,N}.
Update

θt+1 = θt − ηt 1

|B|
∑
n∈B
∇Jn(θ) (5)

If |B| = 1, then use only one sample at a time.

The approximate gradient is unbiased: (See Appendix for Proof)

E

[
1

|B|
∑
n∈B
∇Jn(θ)

]
= ∇J(θ).
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Interpreting SGD

Just showed that the SGD step is unbiased:

E

[
1

|B|
∑
n∈B
∇Jn(θ)

]
= ∇J(θ).

Unbiased gradient implies that each update is

gradient + zero-mean noise

Step size: SGD with constant step size does not converge.

If θ∗ is a minimizer, then J(θ∗) = 1
N

∑N
n=1 Jn(θ∗) = 0. But

1

|B|
∑
n∈B

Jn(θ∗) 6= 0, since B is a subset.

Typical strategy: Start with large step size and gradually decrease:
ηt → 0, e.g., ηt = t−a for some constant a.
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Perspectives of SGD

Classical optimization literature have the following observations.

Compared to GD in convex problems:

SGD offers a trade-off between accuracy and efficiency

More iterations

Less gradient evaluation per iteration

Noise is a by-product

Recent studies of SGD for non-convex problems found that

SGD for training deep neural networks works

SGD finds solution faster

SGD find a better local minima

Noise matters
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GD compared to SGD
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Smoothing the Landscape

Analyzing SGD is an active research topic. Here is one by Kleinberg et al.
(https://arxiv.org/pdf/1802.06175.pdf ICML 2018)

The SGD step can be written as GD + noise:

x t+1 = x t − η(∇f (x t) + w t)

= x t − η∇f (x t)︸ ︷︷ ︸
def
=y t

− ηw t .

y t is the “ideal” location returned by GD.

Let us analyze y t+1:

y t+1 def
= x t+1 − η∇f (x t+1)

= (y t − ηw t)− η∇f (y t − ηw t)

Assume E[w ] = 0, then

E[y t+1] = y t − η∇E[f (y t − ηw t)]

https://arxiv.org/pdf/1802.06175.pdf
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Smoothing the Landscape

Let us look at E[f (y t − ηw t)]:

E[f (y − ηw)] =

∫
f (y − ηw)p(w) dw ,

where p(w) is the distribution of w .∫
f (y − ηw)p(w) dw is the convolution between f and p.

p(w) ≥ 0 for all w , so the convolution always smoothes the function.

Learning rate controls the smoothness

Too small: Under-smooth. You have not yet escaped from bad local
minimum.

Too large: Over-smooth. You may miss a local minimum.



c©Stanley Chan 2020. All Rights Reserved.

Smoothing the Landscape
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Reading List

Gradient Descent

S. Boyd and L. Vandenberghe, “Convex Optimization”, Chapter 9.2-9.4.

J. Nocedal and S. Wright, “Numerical Optimization”, Chapter 3.1-3.3.

Y. Nesterov, “Introductory lectures on convex optimization”, Chapter 2.

CMU 10.725 Lecture https://www.stat.cmu.edu/~ryantibs/

convexopt/lectures/grad-descent.pdf

Stochastic Gradient Descent

CMU 10.725 Lecture https://www.stat.cmu.edu/~ryantibs/

convexopt/lectures/stochastic-gd.pdf

Kleinberg et al. (2018) “When Does SGD Escape Local Minima”,
https://arxiv.org/pdf/1802.06175.pdf
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