ECE595 / STAT598: Machine Learning I
 Lecture 6.1: Linear Separability - Notations

Spring 2020
Stanley Chan
School of Electrical and Computer Engineering
Purdue University

PURDUE

Overview

Outline

Goal: Understand the geometry of linear separability.

- Notations
- Input Space, Output Space, Hypothesis
- Discriminant Function
- Geometry of Discriminant Function
- Separating Hyperplane
- Normal Vector
- Distance from Point to Plane
- Linear Separability
- Which set is linearly separable?
- Separating Hyperplane Theorem
- What if theorem fails?

Supervised Classification

The goal of supervised classification is to construct a decision boundary such that the two classes can be (maximally) separated.

Terminology

- Input vectors: $x_{1}, x_{2}, \ldots, x_{N}$.
- E.g., images, speech, EEG signal, rating, etc
- Input space: \mathcal{X}. Every $x_{n} \in \mathcal{X}$.
- Labels $y_{1}, y_{2}, \ldots, y_{N}$.
- Label space: \mathcal{Y}. Every $y_{n} \in \mathcal{Y}$.
- If labels are binary, e.g., $y_{n}= \pm 1$, then

$$
\mathcal{Y}=\{+1,-1\} .
$$

- Labels are arbitrary. $\{+1,-1\}$ and $\{0,1\}$ has no difference.
- Target function $f: \mathcal{X} \rightarrow \mathcal{Y}$. Unknown.
- Relationship:

$$
y_{n}=f\left(\boldsymbol{x}_{n}\right) .
$$

- Hypothesis $h: \mathcal{X} \rightarrow \mathcal{Y}$. Ideally, want

$$
h(\boldsymbol{x}) \approx f(\boldsymbol{x}), \quad \forall \boldsymbol{x} \in \mathcal{X}
$$

Binary Case

If we restrict ourselves to binary classifier, then

$$
h(\boldsymbol{x})= \begin{cases}1, & \text { if } \quad g(\boldsymbol{x})>0 \\ 0, & \text { if } g(\boldsymbol{x})<0 \\ \text { either, } & \text { if } \quad g(\boldsymbol{x})=0\end{cases}
$$

- $g: \mathcal{X} \rightarrow \mathbb{R}$ is called a discriminant function.
- $g(\boldsymbol{x})>0$: \boldsymbol{x} lives on the positive side of g.
- $g(x)<0$: \boldsymbol{x} lives on the negative side of g.
- $g(\boldsymbol{x})=0$: The decision boundary.
- You can also claim

$$
h(\boldsymbol{x})= \begin{cases}+1, & \text { if } \quad g(\boldsymbol{x})>0 \\ -1, & \text { if } g(\boldsymbol{x})<0 \\ \text { either, } & \text { if } \quad g(\boldsymbol{x})=0\end{cases}
$$

No difference as far as decision is concerned.

Binary Case

Linear Discriminant Function

A linear discriminant function takes the form

$$
g(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}+w_{0}
$$

- $\boldsymbol{w} \in \mathbb{R}^{d}$: linear coefficients
- $w_{0} \in \mathbb{R}$: bias / offset
- Define the overall parameter

$$
\boldsymbol{\theta}=\left\{\boldsymbol{w}, w_{0}\right\} \in \mathbb{R}^{d+1}
$$

- Example:
- If $d=2$, then

$$
g(\boldsymbol{x})=w_{2} x_{2}+w_{1} x_{1}+w_{0} .
$$

- $g(x)=0$ means

$$
x_{2}=\underbrace{-\frac{w_{1}}{w_{2}}}_{\text {slope }} x_{1}+\underbrace{-\frac{w_{0}}{w_{2}}}_{y \text {-intercept }}
$$

Linear Discriminant Function

