ECE595 / STAT598: Machine Learning I
 Lecture 6.2: Linear Separability - Geometry of Discriminant Function

Spring 2020
Stanley Chan
School of Electrical and Computer Engineering
Purdue University
PURDUE

Outline

Goal: Understand the geometry of linear separability.

- Notations
- Input Space, Output Space, Hypothesis
- Discriminant Function
- Geometry of Discriminant Function
- Separating Hyperplane
- Normal Vector
- Distance from Point to Plane
- Linear Separability
- Which set is linearly separable?
- Separating Hyperplane Theorem
- What if theorem fails?

Linear Discriminant Function

- In high-dimension,

$$
g(\boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}
$$

is a hyperplane.

- Separating Hyperplane:

$$
\begin{aligned}
\mathcal{H} & =\{\boldsymbol{x} \mid g(\boldsymbol{x})=0\} \\
& =\left\{\boldsymbol{x} \mid \boldsymbol{w}^{T} \boldsymbol{x}+w_{0}=0\right\}
\end{aligned}
$$

- $\boldsymbol{x} \in \mathcal{H}$ means \boldsymbol{x} is on the decision boundary.
- $\boldsymbol{w} /\|\boldsymbol{w}\|_{2}$ is the normal vector of \mathcal{H}.

Why is w the Normal Vector?

Why is w the Normal Vector?

- Pick \boldsymbol{x}_{1} and \boldsymbol{x}_{2} from \mathcal{H}.
- So $g\left(x_{1}\right)=0$ and $g\left(x_{2}\right)=0$.
- This means:

$$
\boldsymbol{w}^{T} \boldsymbol{x}_{1}+w_{0}=0, \quad \text { and } \quad \boldsymbol{w}^{T} \boldsymbol{x}_{2}+w_{0}=0
$$

- Consider the difference vector $\boldsymbol{x}_{1}-\boldsymbol{x}_{2}$.
- $\boldsymbol{x}_{1}-\boldsymbol{x}_{2}$ is the tangent vector on the surface of \mathcal{H}.
- Check

$$
\boldsymbol{w}^{T}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)=\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{1}+w_{0}\right)-\left(\boldsymbol{w}^{T} \boldsymbol{x}_{2}+w_{0}\right)=0 .
$$

- So \boldsymbol{w} is perpendicular to $\boldsymbol{x}_{1}-\boldsymbol{x}_{2}$, hence it is the normal.
- Normalize $\boldsymbol{w} /\|\boldsymbol{w}\|_{2}$ so that it has unit norm.

Distance from x_{0} to $g(x)=0$

- Pick a point \boldsymbol{x}_{p} on \mathcal{H}
- x_{p} is the closest point to x_{0}
- $x_{0}-x_{p}$ is the normal direction
- So, for some scalar $\eta>0$,

$$
\boldsymbol{x}_{0}-\boldsymbol{x}_{p}=\eta \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}}
$$

- x_{p} is on \mathcal{H}. So

$$
g\left(\boldsymbol{x}_{p}\right)=\boldsymbol{w}^{T} \boldsymbol{x}_{p}+w_{0}=0
$$

Therefore, we can show that

$$
\begin{aligned}
g\left(\boldsymbol{x}_{0}\right) & =\boldsymbol{w}^{T} \mathbf{x}_{0}+w_{0} \\
& =\boldsymbol{w}^{T}\left(\boldsymbol{x}_{p}+\eta \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}}\right)+w_{0} \\
& =g\left(\boldsymbol{x}_{p}\right)+\eta\|\boldsymbol{w}\|_{2}=\eta\|\boldsymbol{w}\|_{2} .
\end{aligned}
$$

Distance from x_{0} to $g(x)=0$

- So distance is

$$
\eta=\frac{g\left(\boldsymbol{x}_{0}\right)}{\|\boldsymbol{w}\|_{2}}
$$

- The closest point \boldsymbol{x}_{p} is

$$
\begin{aligned}
\boldsymbol{x}_{p} & =\boldsymbol{x}_{0}-\eta \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}} \\
& =\boldsymbol{x}_{0}-\frac{g\left(\boldsymbol{x}_{0}\right)}{\|\boldsymbol{w}\|_{2}} \cdot \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}}
\end{aligned}
$$

Conclusion:

$$
\boldsymbol{x}_{p}=\boldsymbol{x}_{0} \quad-\quad \underbrace{\frac{g\left(\boldsymbol{x}_{0}\right)}{\|\boldsymbol{w}\|_{2}}}_{\text {distance }} \cdot \underbrace{\frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}}}_{\text {normal vector }}
$$

Distance from x_{0} to $g(x)=0$

Alternative Solution:

We can also obtain the same result by solving the optimization:

$$
\boldsymbol{x}_{p}=\underset{\boldsymbol{x}}{\operatorname{argmin}} \frac{1}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|^{2} \text { subject to } \boldsymbol{w}^{T} \boldsymbol{x}+w_{0}=0
$$

- Let Lagrangian

$$
\mathcal{L}(\boldsymbol{x}, \lambda)=\frac{1}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|^{2}-\lambda\left(\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}\right)
$$

- Stationarity condition implies

$$
\begin{array}{lll}
\nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \lambda) & =\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)-\lambda \boldsymbol{w} & =\mathbf{0} \\
\nabla_{\lambda} \mathcal{L}(\boldsymbol{x}, \lambda) & =\boldsymbol{w}^{T} \boldsymbol{x}+w_{0} & =0
\end{array}
$$

Distance from x_{0} to $g(x)=0$
Let us do some derivation:

$$
\begin{array}{rll}
\nabla_{x} \mathcal{L}(\boldsymbol{x}, \lambda) & =\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)-\lambda \boldsymbol{w} & =\mathbf{0} \\
\nabla_{\lambda} \mathcal{L}(\boldsymbol{x}, \lambda) & =\boldsymbol{w}^{T} \boldsymbol{x}+w_{0} & =0
\end{array}
$$

- This gives

$$
\begin{aligned}
& \boldsymbol{x} \quad=\boldsymbol{x}_{0}+\lambda \boldsymbol{w} \\
& \Rightarrow \boldsymbol{w}^{T} \boldsymbol{x}+w_{0}=\boldsymbol{w}^{T}\left(\boldsymbol{x}_{0}+\lambda \boldsymbol{w}\right)+w_{0} \\
& \Rightarrow \quad 0 \quad=\boldsymbol{w}^{\top} \boldsymbol{x}_{0}+\lambda\|\boldsymbol{w}\|^{2}+w_{0} \\
& \Rightarrow \quad 0 \quad=g\left(x_{0}\right)+\lambda\|\boldsymbol{w}\|^{2} \\
& \Rightarrow \quad \lambda \quad=-\frac{g\left(x_{0}\right)}{\|\boldsymbol{w}\|^{2}} \\
& \Rightarrow \quad \boldsymbol{x} \quad=\boldsymbol{x}_{0}+\left(-\frac{g\left(\boldsymbol{x}_{0}\right)}{\|\boldsymbol{w}\|^{2}}\right) \boldsymbol{w} .
\end{aligned}
$$

- Therefore, we arrive at the same result:

$$
\boldsymbol{x}_{p}=\boldsymbol{x}_{0}-\underbrace{\frac{g\left(\boldsymbol{x}_{0}\right)}{\|\boldsymbol{w}\|_{2}}}_{\text {distance }} \cdot \underbrace{\frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}}}_{\text {normal yector }}
$$

