ECE 595: Machine Learning I
 Lecture 7.1: Feature Analysis via PCA

Spring 2020
Stanley Chan

School of Electrical and Computer Engineering Purdue University

PURDUE

Overview

Supervised Learning for Classification

Outline

Feature Analysis

- Lecture 7 Principal Component Analysis (PCA)
- Lecture 8 Hand-Crafted and Deep Features

This Lecture

- PCA
- Low-dimensional Representation
- Geometric Interpretation
- Eigen-Face Problem
- Kernel-PCA
- Adding kernels to PCA
- Algorithm
- Examples

Low-Dimensional Representation

- Consider a set of data point $\left\{\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots, \boldsymbol{x}^{(N)}\right\}$
- These data points are living in a high dimensional space $\boldsymbol{x}^{(n)} \in \mathbb{R}^{d}$
- Find a low dimensional representation in \mathbb{R}^{p} where $p<d$
- Equivalent to finding the principal components $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{p}$ such that

$$
\boldsymbol{x}^{(n)} \approx \sum_{i=1}^{p} \alpha_{i}^{(n)} \boldsymbol{v}_{i}
$$

- Then every $\boldsymbol{x}^{(n)} \in \mathbb{R}^{d}$ can be represented using $\boldsymbol{\alpha}^{(n)} \in \mathbb{R}^{p}$.

One Sample Analysis

- Consider a simpler problem: One data point \boldsymbol{x} and one direction \boldsymbol{v}.
- We want to find a direction $\widehat{\boldsymbol{v}}$ and a scalar $\widehat{\alpha}$ such that

$$
(\widehat{\boldsymbol{v}}, \widehat{\alpha})=\underset{\|\boldsymbol{v}\|_{2}=1, \alpha}{\operatorname{argmin}}\left\|\left[\begin{array}{c}
\mid \\
\boldsymbol{x} \\
\mid
\end{array}\right]-\alpha\left[\begin{array}{c}
\mid \\
\boldsymbol{v} \\
\mid
\end{array}\right]\right\|^{2}
$$

- First assume \boldsymbol{v} is available. Then take derivative w.r.t. α :

$$
2 \boldsymbol{v}^{T}(\boldsymbol{x}-\alpha \boldsymbol{v})=0 \quad \Rightarrow \quad \alpha=\boldsymbol{v}^{T} \boldsymbol{x}
$$

One Sample Analysis

- Substitute $\alpha=\boldsymbol{x}^{T} \boldsymbol{v}$ into the optimization
- Then the optimization becomes

$$
\begin{aligned}
\underset{\|v\|_{2}=1}{\operatorname{argmin}}\|\boldsymbol{x}-\alpha \boldsymbol{v}\|^{2} & =\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmin}}\left\{\boldsymbol{x}^{\top} \boldsymbol{x}-2 \alpha \boldsymbol{x}^{T} \boldsymbol{v}+\alpha^{2} \boldsymbol{v}^{\top} \boldsymbol{v}\right\} \\
& =\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmin}}\left\{-2 \alpha \boldsymbol{x}^{T} \boldsymbol{v}+\alpha^{2}\right\} \\
& =\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmin}}\left\{-2\left(\boldsymbol{x}^{T} \boldsymbol{v}\right) \boldsymbol{x}^{\top} \boldsymbol{v}+\left(\boldsymbol{x}^{T} \boldsymbol{v}\right)^{2}\right\} \\
& =\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmax}}\left\{\boldsymbol{v}^{\top} \boldsymbol{x}^{T} \boldsymbol{v}\right\}
\end{aligned}
$$

- Take expectation on both sides:

$$
\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{X}}\|\boldsymbol{x}-\alpha \boldsymbol{v}\|^{2}=\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{\top} \mathbb{E}_{\boldsymbol{x}}\left\{\boldsymbol{x} \boldsymbol{x}^{\top}\right\} \boldsymbol{v}
$$

Eigenvalue Problem

- Let $\boldsymbol{\Sigma} \stackrel{\text { def }}{=} \mathbb{E}\left[\boldsymbol{x} \boldsymbol{x}^{T}\right]$.
- Then the optimization problem is

$$
\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{\top} \boldsymbol{\Sigma} \boldsymbol{v} .
$$

- The solution to this problem is the eigenvalue and eigenvectors of $\boldsymbol{\Sigma}$.

Theorem

Let $\boldsymbol{\Sigma}$ be a $d \times d$ matrix with eigen-decomposition $\boldsymbol{\Sigma}=\boldsymbol{U S} \boldsymbol{U}^{T}$. Then, the optimization

$$
\widehat{\boldsymbol{v}}=\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{\Sigma} \boldsymbol{v} .
$$

has a solution $\widehat{\boldsymbol{v}}=\boldsymbol{u}_{i}$ for any $i=1, \ldots, d$.
Proof: See Appendix.

Finite Samples

- When there are N training samples, the optimization is

$$
\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmin}} \underbrace{\frac{1}{N} \sum_{n=1}^{N}\left\|\boldsymbol{x}^{(n)}-\alpha^{(n)} \boldsymbol{v}\right\|^{2}}_{=\mathbb{E}\left[\|\boldsymbol{x}-\alpha \boldsymbol{v}\|^{2}\right], N \rightarrow \infty}=\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{T} \underbrace{\left\{\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}^{(n)}\left(\boldsymbol{x}^{(n)}\right)^{T}\right\}}_{=\mathbb{E}\left[\boldsymbol{x} \boldsymbol{x}^{T}\right], N \rightarrow \infty} \boldsymbol{v}
$$

- In practice, given $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(N)}$, we approximate $\boldsymbol{\Sigma}$ by its empirical estimate

$$
\boldsymbol{\Sigma} \approx \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}^{(n)}\left(\boldsymbol{x}^{(n)}\right)^{T}
$$

- You can also remove the mean vectors: $\boldsymbol{\mu}=\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}^{(n)}$:

$$
\boldsymbol{\Sigma} \approx \frac{1}{N} \sum_{n=1}^{N}\left(\boldsymbol{x}^{(n)}-\boldsymbol{\mu}\right)\left(\boldsymbol{x}^{(n)}-\boldsymbol{\mu}\right)^{T}
$$

Statistical Interpretation

- The optimization

$$
\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{\Sigma} \boldsymbol{v} .
$$

asks us to find a principal direction that maximizes the variance.

- Belief: Large variance $=$ "signal" , small variance $=$ "noise"

The Eigenface Problem

Figure: The extended Yale Face Database B.

- Dataset: $\left\{\boldsymbol{x}^{(n)}\right\}_{n=1}^{N}$.
- Each $\boldsymbol{x}^{(n)} \in \mathbb{R}^{d}$ is a vector representation of a $\sqrt{d} \times \sqrt{d}$ image.
- Task 1: Find a low-dimensional representation (This lecture)
- Task 2: Classify faces for a new image (Later)

Low Dimensional Representation

- Estimate the mean vector $\boldsymbol{\mu}=\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}^{(n)}$.
- Estimate the covariance matrix

$$
\begin{equation*}
\boldsymbol{\Sigma}=\frac{1}{N} \sum_{n=1}^{N}\left(\boldsymbol{x}^{(n)}-\boldsymbol{\mu}\right)\left(\boldsymbol{x}^{(n)}-\boldsymbol{\mu}\right)^{T} \tag{1}
\end{equation*}
$$

- Eigen-decomposition: $\boldsymbol{\Sigma}=\boldsymbol{U S} \boldsymbol{U}^{T}$.
- When a new image \boldsymbol{y} comes, estimate the coefficients:

$$
\alpha_{i}=\boldsymbol{u}_{i}^{T} \boldsymbol{y}
$$

- How many coefficients to use?

The Basis Vectors \boldsymbol{u}_{i}

Representing Faces

Discussion

What does PCA do?

- PCA is a tool for dimension reduction.
- It compresses a raw data vector $\boldsymbol{y} \in \mathbb{R}^{d}$ into a smaller feature vector $\alpha \in \mathbb{R}^{p}$.
- You can now do classification in \mathbb{R}^{p} instead of \mathbb{R}^{d}.

When will PCA fail?

- When data intrinsically does not have orthogonal projections
- For example, the distributions below

