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Overview

Supervised Learning for Classification
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Outline

Feature Analysis

Lecture 7 Principal Component Analysis (PCA)

Lecture 8 Hand-Crafted and Deep Features

This Lecture

PCA

Low-dimensional Representation
Geometric Interpretation
Eigen-Face Problem

Kernel-PCA

Adding kernels to PCA
Algorithm
Examples
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Low-Dimensional Representation

Consider a set of data point {x (1), x (2), . . . , x (N)}
These data points are living in a high dimensional space x (n) ∈ Rd

Find a low dimensional representation in Rp where p < d

Equivalent to finding the principal components v1, . . . , vp such that

x (n) ≈
p∑

i=1

α
(n)
i v i

Then every x (n) ∈ Rd can be represented using α(n) ∈ Rp.
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One Sample Analysis

Consider a simpler problem: One data point x and one direction v .
We want to find a direction v̂ and a scalar α̂ such that

(v̂ , α̂) = argmin
‖v‖2=1,α

∥∥∥∥∥∥
 |x
|

− α
 |v
|

∥∥∥∥∥∥
2

First assume v is available. Then take derivative w.r.t. α:

2vT (x − αv) = 0 ⇒ α = vTx .
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One Sample Analysis

Substitute α = xTv into the optimization
Then the optimization becomes

argmin
‖v‖2=1

‖x − αv‖2 = argmin
‖v‖2=1

{
xTx − 2αxTv + α2

���vTv
}

= argmin
‖v‖2=1

{
− 2αxTv + α2

}
= argmin
‖v‖2=1

{
− 2(xTv)xTv + (xTv)2

}
= argmax
‖v‖2=1

{
vTxxTv

}
Take expectation on both sides:

argmin
‖v‖2=1

Ex‖x − αv‖2 = argmax
‖v‖2=1

vTEx

{
xxT

}
v
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Eigenvalue Problem

Let Σ
def
= E[xxT ].

Then the optimization problem is

argmax
‖v‖2=1

vTΣv .

The solution to this problem is the eigenvalue and eigenvectors of Σ.

Theorem

Let Σ be a d × d matrix with eigen-decomposition Σ = USUT . Then,
the optimization

v̂ = argmax
‖v‖2=1

vTΣv .

has a solution v̂ = u i for any i = 1, . . . , d .

Proof: See Appendix.
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Finite Samples

When there are N training samples, the optimization is

argmin
‖v‖2=1

1

N

N∑
n=1

‖x (n) − α(n)v‖2︸ ︷︷ ︸
=E[‖x−αv‖2], N→∞

= argmax
‖v‖2=1

vT

{
1

N

N∑
n=1

x (n)(x (n))T
}

︸ ︷︷ ︸
=E[xxT ], N→∞

v

In practice, given x (1), . . . , x (N), we approximate Σ by its empirical
estimate

Σ ≈ 1

N

N∑
n=1

x (n)(x (n))T

You can also remove the mean vectors: µ = 1
N

∑N
n=1 x (n):

Σ ≈ 1

N

N∑
n=1

(x (n) − µ)(x (n) − µ)T
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Statistical Interpretation

The optimization

argmax
‖v‖2=1

vTΣv .

asks us to find a principal direction that maximizes the variance.

Belief: Large variance = “signal”, small variance = “noise”
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The Eigenface Problem

Figure: The extended Yale Face Database B.

Dataset: {x (n)}Nn=1.

Each x (n) ∈ Rd is a vector representation of a
√
d ×
√
d image.

Task 1: Find a low-dimensional representation (This lecture)

Task 2: Classify faces for a new image (Later)
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Low Dimensional Representation

Estimate the mean vector µ = 1
N

∑N
n=1 x (n).

Estimate the covariance matrix

Σ =
1

N

N∑
n=1

(x (n) − µ)(x (n) − µ)T . (1)

Eigen-decomposition: Σ = USUT .
When a new image y comes, estimate the coefficients:

αi = uT
i y

How many coefficients to use?
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The Basis Vectors u i
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Representing Faces



c©Stanley Chan 2020. All Rights Reserved.

Discussion

What does PCA do?

PCA is a tool for dimension reduction.

It compresses a raw data vector y ∈ Rd into a smaller feature vector
α ∈ Rp.

You can now do classification in Rp instead of Rd .

When will PCA fail?

When data intrinsically does not have orthogonal projections

For example, the distributions below




