ECE 595: Machine Learning I
 Lecture 7.2: Kernel-PCA

Spring 2020
Stanley Chan
School of Electrical and Computer Engineering
Purdue University

PURDUE

Outline

Feature Analysis

- Lecture 7 Principal Component Analysis (PCA)
- Lecture 8 Hand-Crafted and Deep Features

This Lecture

- PCA
- Low-dimensional Representation
- Geometric Interpretation
- Eigen-Face Problem
- Kernel-PCA
- Adding kernels to PCA
- Algorithm
- Examples

Motivation of Kernel PCA

- Data is originally difficult for PCA
- Find a nonlinear transform
- Idea: Leverage the kernel trick: $k\left(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)}\right)=\left\langle\phi\left(\boldsymbol{x}^{(i)}\right), \phi\left(\boldsymbol{x}^{(j)}\right)\right\rangle$
- Example: Left is hard for PCA. After K-PCA, right has a clear principal component.

Kernel for Covariance Matrix

- Assume $\phi\left(\boldsymbol{x}^{(n)}\right)$ has zero mean. Then consdier the covariance matrix

$$
\boldsymbol{\Sigma}=\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}^{(n)}\left(\boldsymbol{x}^{(n)}\right)^{T}
$$

- Replacing the outer products by feature transforms

$$
\boldsymbol{x}^{(n)} \quad \rightarrow \phi\left(\boldsymbol{x}^{(n)}\right)
$$

for some nonlinear transformation ϕ.

- If this can be done, then the covariance will become

$$
\boldsymbol{\Sigma}=\frac{1}{N} \sum_{n=1}^{N} \phi\left(\boldsymbol{x}^{(n)}\right) \phi\left(\boldsymbol{x}^{(n)}\right)^{T}
$$

- But this is not enough because a kernel needs an inner product

$$
k\left(\boldsymbol{x}^{(n)}, \boldsymbol{x}^{(m)}\right)=\phi\left(\boldsymbol{x}^{(n)}\right)^{T} \phi\left(\boldsymbol{x}^{(m)}\right)
$$

Kernel Trick

- Recall: PCA solves the eigen-decomposition problem:

$$
\boldsymbol{\Sigma} \boldsymbol{u}=\lambda \boldsymbol{u}
$$

So we also need to consider \boldsymbol{u}.

- How about this candidate? (Recall: In Kernel Method we express the model parameter as a linear combination of the samples):

$$
\boldsymbol{u}=\sum_{n=1}^{N} \alpha_{n} \phi\left(\boldsymbol{x}^{(n)}\right)
$$

- Substitute this into the equation $\boldsymbol{\Sigma} \boldsymbol{u}=\lambda \boldsymbol{u}$:

$$
\underbrace{\left(\frac{1}{N} \sum_{n=1}^{N} \phi\left(\boldsymbol{x}^{(n)}\right) \phi\left(\boldsymbol{x}^{(n)}\right)^{T}\right)}_{\boldsymbol{\Sigma}} \underbrace{\left(\sum_{m=1}^{N} \alpha_{m} \phi\left(\boldsymbol{x}^{(m)}\right)\right)}_{\boldsymbol{u}}=\lambda \underbrace{\left(\sum_{n=1}^{N} \alpha_{n} \phi\left(\boldsymbol{x}^{(n)}\right)\right)}_{\lambda \boldsymbol{u}}
$$

Kernel Trick

- This means

$$
\frac{1}{N} \sum_{n=1}^{N} \phi\left(\boldsymbol{x}^{(n)}\right)\left(\sum_{m=1}^{N} \alpha_{m} \phi\left(\boldsymbol{x}^{(n)}\right)^{T} \phi\left(\boldsymbol{x}^{(m)}\right)\right)=\lambda \sum_{n=1}^{N} \alpha_{n} \phi\left(\boldsymbol{x}^{(n)}\right)
$$

- Recognizing $\phi\left(\boldsymbol{x}^{(n)}\right)^{T} \phi\left(\boldsymbol{x}^{(m)}\right)=k\left(\boldsymbol{x}^{(n)}, \boldsymbol{x}^{(m)}\right)$:

$$
\frac{1}{N} \sum_{n=1}^{N} \phi\left(\boldsymbol{x}^{(n)}\right)\left(\sum_{m=1}^{N} \alpha_{n} k\left(\boldsymbol{x}^{(n)}, \boldsymbol{x}^{(m)}\right)\right)=\lambda \sum_{n=1}^{N} \alpha_{n} \phi\left(\boldsymbol{x}^{(n)}\right)
$$

- Multiply $\phi\left(\boldsymbol{x}^{(\ell)}\right)^{T}$ on both sides.

$$
\frac{1}{N} \sum_{n=1}^{N} k\left(\boldsymbol{x}^{(\ell)}, \boldsymbol{x}^{(n)}\right)\left(\sum_{m=1}^{N} \alpha_{n} k\left(\boldsymbol{x}^{(n)}, \boldsymbol{x}^{(m)}\right)\right)=\lambda \sum_{n=1}^{N} \alpha_{n} k\left(\boldsymbol{x}^{(\ell)}, \boldsymbol{x}^{(n)}\right)
$$

- This is $\frac{1}{N} \boldsymbol{K}(\boldsymbol{K} \boldsymbol{\alpha})=\lambda \boldsymbol{K} \boldsymbol{\alpha}$.

Eigenvectors of K-PCA

- Rearrange the terms we have that $\boldsymbol{K}^{2} \boldsymbol{\alpha}=N \lambda \boldsymbol{K} \boldsymbol{\alpha}$.
- We can remove one of the \boldsymbol{K} 's since it only causes issues with zero-eigenvalues which are not important to us anyway. So we have

$$
\begin{equation*}
K \boldsymbol{\alpha}=N \lambda \boldsymbol{\alpha} \tag{2}
\end{equation*}
$$

- This is just another eigen-decomposition problem. We moved from $\boldsymbol{\Sigma} \boldsymbol{u}=\lambda \boldsymbol{u}$ to $\boldsymbol{K} \boldsymbol{\alpha}=N \lambda \boldsymbol{\alpha}$. Note that $\boldsymbol{\alpha}$ is the coefficients for \boldsymbol{u} :

$$
\boldsymbol{u}=\sum_{n=1}^{N} \alpha_{n} \phi\left(\boldsymbol{x}^{(n)}\right)=\boldsymbol{\Phi} \boldsymbol{\alpha}
$$

where $\boldsymbol{\Phi}=\left[\phi\left(\boldsymbol{x}^{(1)}\right), \ldots, \phi\left(\boldsymbol{x}^{(N)}\right)\right]$ is the transformed data matrix. Recall $\boldsymbol{\Phi} \boldsymbol{\Phi}^{\top}=\boldsymbol{K}$ is the kernel matrix where

$$
[\boldsymbol{K}]_{i j}=\phi\left(\boldsymbol{x}^{(i)}\right)^{T} \phi\left(\boldsymbol{x}^{(j)}\right)
$$

Representation in Kernel Space

- If you run eigen-decomposition on \boldsymbol{K}, you will get p eigen-vectors $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{p}$ where p is the number you choose.
- When a new sample \boldsymbol{x} comes, the j-th representation coefficient is

$$
\begin{equation*}
\beta_{j}=\phi(\boldsymbol{x})^{T} \boldsymbol{u}=\phi(\boldsymbol{x})^{T} \sum_{n=1}^{N} \alpha_{j n} \phi\left(\boldsymbol{x}^{(n)}\right)=\sum_{n=1}^{N} \alpha_{j n} k\left(\boldsymbol{x}, \boldsymbol{x}^{(n)}\right) \tag{3}
\end{equation*}
$$

- For the entire representation $\boldsymbol{\beta} \in \mathbb{R}^{p}$, we have

$$
\boldsymbol{\beta}=\left[\begin{array}{c}
---\boldsymbol{\alpha}_{1}^{T}--- \tag{4}\\
\vdots \\
---\boldsymbol{\alpha}_{p}^{T}---
\end{array}\right]\left[\begin{array}{c}
k\left(\boldsymbol{x}, \boldsymbol{x}^{(1)}\right) \\
k\left(\boldsymbol{x}, \boldsymbol{x}^{(2)}\right) \\
\vdots \\
k\left(\boldsymbol{x}, \boldsymbol{x}^{(N)}\right)
\end{array}\right]
$$

where $\boldsymbol{\alpha}_{j}=\left[\alpha_{j 1}, \ldots, \alpha_{i N}\right]^{T}$.

Example

Here is an example taken from Wang (2012) Kernel Principal Component Analysis and its Applications https://arxiv.org/abs/1207. 3538

Example

Here is an example taken from Wang (2012) Kernel Principal Component Analysis and its Applications https://arxiv.org/abs/1207.3538

K-PCA with polynomial

K-PCA with Gaussian

Reading List

PCA Tutorial

- Jonathon Shlens "A Tutorial on Principal Component Analysis", https://arxiv.org/pdf/1404.1100.pdf

PCA: Should We Remove Mean?

- Paul Honeine, "An eigenanalysis of data centering in machine learning", https://arxiv.org/pdf/1407.2904.pdf
- Does mean centering or feature scaling affect a Principal Component Analysis? https://sebastianraschka.com/faq/docs/pca-scaling.html

K-PCA

- Quan Wang (2012), "Kernel Principal Component Analysis and its Applications", https://arxiv.org/abs/1207. 3538
- Schölkopf et al. (2005), "Kernel Principal Component Analysis", https://link.springer.com/chapter/10.1007/BFb0020217

